浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7515-2FM02-0AB0参数详细

 一、前言

  罗克韦尔自动化公司的自动化产品十几年来在国内得到了广泛的应用,特别是其顺序控制产品从PLC-3到ControlLogix系统已经应用到全国各行业的实际生产中。

  2002年,在秦皇岛港散粮码头筒仓改扩建工程中采用了罗克韦尔自动化的ControlLogix系统针对原有的控制系统(PLC-3)进行了改造,并增加了新建的筒仓控制系统,使原有筒仓和新建筒仓的设备在ControlLogix控制平台下进行统一控制。该系统从硬件改造到工艺控制流程都体现了ControlLogix系统的优越性。

  二、项目介绍

  秦皇岛港散粮码头筒仓系统于1991年由日本三菱公司建成,主要承担散粮货物的进出口及临时仓储任务,每年能达到120万吨的吞吐量,建成之初在亚洲堪称大散粮码头,随着国内经济的日益发展该码头逐渐不能满足现在的需要,所以秦皇岛港务局决定在原有筒仓的基础上进行改扩建。

  原控制系统分为筒仓控制部分、出口线控制部分(由天津电气传动所于1995年增加的)、卸船机控制部分和称重单元控制部分,其中筒仓控制部分采用的是罗克韦尔自动化公司的A-B PLC-3处理器和PLC-5系列I/O,该部分为此次项目改造的主要部分;卸船机部分和称重单元控制部分采用的是A-B PLC-5/15处理器,这两部分需要与原有的筒仓部分进行数据交换;出口线控制部分采用的是A-B PLC-5/25处理器,该部分原设计时没有和其他三部分控制系统进行控制上的连接。(硬件结构示意图见附图一)

  此次项目改建在原有的78个小筒仓(总容量6.5万吨)的基础上,增加了7个大筒仓(总容量7万吨),全部新老系统I/O点数达到了12000点。新增加的筒仓的控制系统采用了ControlLogix系统I/O,并采用Logix5550处理器对所有I/O进行控制,替代原来的PLC-3处理器,通过DHRIO模板与原有的PLC-5系列的I/O进行通讯。

  三、硬件系统

  在该项目中,由于要保留原来老筒仓系统的I/O设备,同时采用新ControlLogix的控制平台。

  **的ControlLogix控制平台具有下列特点:

  1.无缝连接 - 易于与现有的PLC集成;现有网络的用户可以与其它网络上的程序控制器透明的收发信息。
  2.快速性 - ControlLogix平台通过背板提供了高速的数据传输,而ControlLogix系列处理器提供了高速的控制平台。
  3.可升级 - 根据实际需要增加或减少处理器或通讯模板的个数,可在一个框架内使用多个处理器;选择满足应用需求的控制器内存容量。
  4.工业化 - 提供了一个硬件平台,可耐受振动、高温和各种工业环境下的电气干扰。
  5.集成化 - 建立了一个集成多种技术的系统平台,包括顺序控制、运动控制、传动控制和过程应用。
  6.结构紧凑 - 适用于高度分散控制并且配电盘空间有限的场合。

  经改造后的系统在硬件上保留了原PLC-5系统的I/O模板和Remote I/O适配器(包括筒仓部分和出口线部分),增加了新筒仓部分的ControlLogix系统的I/O及处理器。

  整个系统通过3条Remote链路与老筒仓部分(28个Remote I/O站点)和出口线部分I/O(8个Remote I/O站点)进行通讯连接;通过冗余的ControlNet网络与新筒仓部分的I/O进行通讯(8个ControlNet节点);通过DH+链路与原系统的卸船机和新筒仓的集尘控制单元进行数据交换;在中控室我们将Remote I/O链路、DH+链路、ControlNet链路和Ethernet链路通过相应的通讯模板集中在一个1756-A10建立了一个Gateway,并通过Ethernet与人机操作系统进行通讯,同时预留了一个DH+通讯口,方便用户通过Gateway(Ethernet-DH)与6台秤控PLC-5进行通讯调试。(详细系统配置图见附图二)。

  硬件系统特点:

  1.继续采用原有老筒仓系统的I/O,降低了用户的硬件成本。
  2.保留了原有老筒仓系统Remote I/O适配器(1771-ASB)的配置及其它的所有配置,只是将原有的处理器更新,低限度的减少了改造老系统的风险性。
  3.将独立的出口线部分的I/O联接到整个系统来,实现了全部I/O统一协调控制的功能,改变了原来使用出口线需要强制老筒仓机械设备信号的情况(使用出口线时需要用到老筒仓系统中的设备)。
  4.采用一个1756-L55M14处理器,其强大的功能保证了多流程同时操作的处理能力和速度。
  5.Gateway平台将各种通讯形式汇集到一起,方便了处理器访问所有I/O,保证了全部控制的统一协调性。同时方便了不同网络上的设备间的通讯和工程师站对不同网络下的设备维护、(程序)修改工作。(见数据流向示意图)

  

  6.利用1756-DHRIO上的DH+接口,为用户维护现有的6台称控PLC-5/15提供了方便(只需将通讯电缆联接到该端口上即可在工程师站通过Gateway(Ethernet)对称控PLC实现维护)。
  7.Gateway平台框架中预留的槽架为用户将来进行其他功能的扩展提供了方便。

  经过改造后的控制系统,整合了新老筒仓全部的控制功能,整体的解决了各个系统之间对其他系统的信号需求的要求,使所有设备从控制角度实现了统一的调度控制,改变了原出口线部分操作的时候需要外部人工参与的情况,提高了生产效率。

  四、软件系统

  4.1系统编程软件

  在软件编制过程中,我们采用了与ControlLogix系统配套的RSLogix5000系列编程环境。RSLogix5000系列编程环境,提供了易于使用且符合IEC 1131-3标准的接口,采用结构和数组的符号化编程,以及专用的顺序控制、运动控制、传动控制和过程控制场合的指令集,大大的提高了编程效率。

  灵活的继电器梯形图和功能块图编辑器,使用户创建应用程序变得轻松自如。在梯形图和功能块编辑器中,用户能看到标准的、易于使用的且直观的操作界面。其以下的**功能帮助程序编制人员方便的编制程序。

  1.在线帮助,包括概述信息,编程信息,屏幕信息和参考信息,以及在线参考书,包括电子版的相关参考手册和用户手册
  2.容易组态,包括图形化的控制器管理器,I/O组态对话框,运动组态工具和点击组态方法
  3.完善的数据处理,采用数组和用户定义结构,可提供必要的灵活性满足应用系统要求,而不是强迫它去适应特殊的内存结构,如控制器的数据表内存
  4.易于使用的I/O寻址方法
  5.一个自由格式操作的梯形图编辑器,可以让用户同时修改多个逻辑梯级,也可以通过点击界面或ASCII输入提示输入梯级
  6.灵活的,易于使用的功能块图编辑器
  7.拖放编辑和导航功能,可以快速地从一个数据文件移动数据元素到另一个数据文件,从一个子程序或项目中把梯级移动到另一个,或从梯级将指令移动到另一个梯级,或在一个项目内的指令在功能块图之间相互移动
  8.包括继电器梯形图和功能块指令的指令集
  9.诊断监控能力,包括控制器的状态显示,程序验证功能和强有力的数据监控器

  4.2系统工艺描述

  散粮筒仓是以散粮装卸为主的散粮码头,其接卸能力为2×600吨/小时,设计年通过能力为120万吨。其控制部分采用的是ControlLogix系列的可编程序控制器控制。

  散粮筒仓工艺流程主要包括:船 至 车(卸船)、船 至 仓(卸船)、倒仓(仓 至 仓,翻仓)、(火)车 至 仓(卸车)、仓(火) 至 车(装车)、仓 至 船(转船)、余料返回等七大类流程。散粮筒仓系统主要包括大型设备(大型设备是指输送粮食的刮板机、皮带机、斗提机等大型设备)、除尘器、闸阀三类设备。

  为了防止在物料输送过程中发生堵料、重载停车和堆料等事故,要求流程基本的控制方式:启动时逆料流顺序启动;流程停止时顺料流顺序停止;当流程运行过程中,如果流程内某一设备出现故障,那么流程上游设备应该紧急停止,下游设备继续运行,以免发生物料的堵塞,从而造成粮食的撒漏或设备的损坏;当故障排除后,再按照逆料流的顺序依次起动流程内的设备。

  由于物料在输送过程中会产生大量的粉尘,为防止粉尘引发安全事故,在大型输送设备的两两连接处还安装了除尘器。要求在流程启动前5分钟启动除尘器,流程设备停止后除尘器接着运行5分钟。如果在流程启动或者运行中除尘器发生故障,那么要求除尘器所关联的设备要立刻停止,并且由此引发该设备的上游设备立刻停止。除尘器在控制上的特点是每个除尘器的启停都可以用唯一的一个大型设备的运行(选中状态)来选择运行。

  所需要控制的闸阀包括三通闸(TW)、开关阀(AG)和与除尘系统相关的气动、电动阀门。闸阀控制上的特点是可由上下游两个大型设备或除尘器就可以确定闸阀的开启或开闭方向。

  整个系统可以允许同时4条流程作业。

  由以上工艺可以看出,散粮运输储存控制系统是典型的顺序控制系统。

  4.3控制功能实现

  在散粮筒仓的工艺流程中,所有的控制动作以流程的方式体现出来,即粮食运送的路径。所以根据工艺的控制的需要,将流程控制分为流程选取、流程启动、流程运行、流程停止、故障处理等几个主要功能部分。我们根据这几个主要功能部分,针对每个大型设备分为启动、运行、停止、故障处理等几个控制部分,每个设备的各个功能由上下游关联设备进行启动、运行、停止、故障处理的控制。下面就其中几个主要部分分别进行介绍。

  4.3.1流程选取部分

  流程选取部分是整个控制过程中的首要部分,只有选取出要运行的流程,相应的设备才能按照工艺要求运行(动作)。在流程选取时主要有两种方法:向导式选取法,即根据选取的首尾设备由程序自动选择首尾设备之间的中间设备;流程表智能选取法,即根据选取的首尾设备在流程表中选取相应的流程。其中,向导式选取法适合于工艺流程路径少,流程中设备数量少,设备相关性唯一的流程;流程表智能选取法适合于工艺流程路径多,流程中设备数量多,设备相关性复杂的流程。

  在秦皇岛散粮筒仓系统中对应7大类的工艺流程有多达486条流程可供选择,为了充分发挥系统设备的利用率,为系统提供全面的流程路径,我们在系统方案设计时采取了流程表智能选取法。我们将流程路径中80多个大型设备(刮板机、提升机、传送皮带等)按照顺料流的顺序排列(对于不同流程中使用到的设备按照流程类型的顺序排列),并且根据流程类型将全部486条流程制成流程表,在ControlLogix处理器中采用二维数组(486×3Double Word(32Bits))来存储流程表。对相应流程中所要采用的设备其对应位置1,非流程使用设备其对应位置0,详见下表。

  ControlLogix处理器通过接受上位机传送下来的流程选择一维数组,在该数组中将要进行的流程的首尾设备及流程唯一的关键设备(即操作人员在人机操作界面上通过点击相应的设备将其数组内对应的设备置1,多选取4个设备就能保证流程唯一)标志出来。在ControlLogix处理器接收到流程选择命令之后将接受的流程选择一维数组内的数据按位与二维流程表进行逐条流程的比较,选出相应的流程。同时比较将继续进行,以判断流程是否唯一。如果流程不唯一,则标志出流程不唯一,并停止流程选取,同时将该信息传至人机操作界面提醒操作人员流程选取错误重新选取流程。

  当流程选取唯一时,流程选取程序将判断所选的流程设备是否存在设备占用、设备故障等情况(如果存在这些情况该流程就不能运行),并将这些信息反馈回人机操作界面。

  在流程设备一切正常后,流程选取程序将被选中的设备的选中标志置1,以便设备得到相应的选中命令。

  4.3.2流程状态控制部分

  由于整个系统可以多同时允许4条相同类型或不同类型的流程运行,所以每个流程的状态对操作人员全面了解整个系统的运行状况极为重要。我们将每一条流程的状态分为:流程选择中、流程选中、流程启动中、流程运行、流程停止中、流程故障、流程停止等7种状态。

  从流程选择开始,就针对该条流程的状态进行跟踪,包括流程中各个设备的状态、闸阀到位情况、除尘器运行情况等等,并向大型设备发出流程启动和停止信号。在流程选取后,流程状态控制程序就像被选中的设备标识被第几条流程(流程1-4)选中的标志,以便选择的设备按照流程规定的顺序运行。

  4.3.3大型设备控制部分

  在全部工艺流程中有80多台大型设备,承担着粮食的输送、提升等工作,它们分别为刮板机、皮带机、提升机等,保证了7大类流程的良好运行。

  每个大型设备都是按照是否被流程选中的标志(并且能标志出被那条流程选中),然后其根据被选中的标志与其上、下游关联设备的选中标志进行比较,具有相同流程选中标志的设备为同一条流程上的设备,大型设备根据其下游设备的启动情况进行顺序启动,根据其上游设备的停止情况进行顺序停止,并且根据其下游设备的故障状态立即停止本身设备及其上游同一条流程的相关设备。依据这种方法,大型设备不用去清楚其所要服务的是什么类型的流程,只要知道其服务于第几条流程,第1、2、3或4条流程,极大地简化了设备控制的复杂性。

  同时,每个大型设备在控制处理上分为启动、停止、运行、故障等部分,清晰的体现了设备控制的状态和方式。

  流程中的首尾设备,根据流程状态控制程序中的对应流程的启动、停止命令进行启动(尾设备)、停止(首设备)。

  ControlLogix系统作为一个高性能的控制平台,为实际应用提供了灵活的、方便的应用。其模块化的结构满足了不同应用环境的要求;强大的处理能力为各种大型系统良好的运行提供了保证;Ethernet、ControlNet、DH+等众多网络形式能随意的与罗克韦尔自动化各个系统进行透明式的通讯,同时第三方厂家提供的其他类型的网络接口模板能使ControlLogix系统方便的与Modbus、Profibus等网络良好的链接。与ControlLogix系统配套的RSLogix5000编程环境为开发人员提供了方便快捷的编程、调试手段,本文中介绍的项目由两位工程师仅仅用了9个月的时间就完成了程序编制、实验室调试和现场调试的全部工作。

  本文中仅介绍了ControlLogix系统强大功能中的一部分 - 顺序控制,同时ControlLogix系统还具备运动控制、传动控制和过程应用等卓越的功能,以及他们的同时混合使用。所以说ControlLogix为各种类型的控制提供了一个高性能的控制平台,是罗克韦尔自动化提供的新一代的控制平台。

 塑料挤出机是异型材挤出生产线(如塑钢门窗的生产) 和铝塑复合管生产线上的关键设备。挤出机自加料端至机头分为加料区、熔融区和均化区3 个区。在加料区,固体塑料通过与料筒的磨擦作用而被向前输送并逐渐压实;在熔融区,固体塑料被加热熔融,在液固界面上生成一层熔体膜,当熔体膜厚度超过螺翅与料筒的间隙时,熔体被螺翅刮落,在螺翅前侧形成熔池,后侧形成固体熔床;在均化区,物料在螺杆前进的过程中受到正流、侧流、倒流、漏流4 种运动的搅拌、剪切和压紧作用,得到充分混合、塑化,并在一定压力下连续地通过口模而形成连续体。在挤出机中温度和速度控制是非常重要的。

  贝加莱公司的工业自动化产品PCC是综合了PLC和工业计算机优点的新一代可编程计算机控制器,具备各种标准的控制功能,硬件采用了能灵活配置的模块化结构,可带电插拨,可靠性高。PCC 支持多任务分时操作系统,提供了8 个分别具有不同循环时间不同优先权的任务等级(task class) 。其中优先权高的任务等级,即高速任务有着较短的执行周期(周期可由用户设定,范围从1ms 到20ms) ,而标准任务的循环时间可从10 ms到5000 ms设定。而且每个任务等级可包含多个具体任务,这些任务中间可以再细分优先权的高低。

  PCC的多处理器和智能I/ O 技术使其智能性强,智能模块内部有自己的CPU ,其运动模块配以高精度高质量的运动控制算法,温度模块配以具有自学习能力的温度调节算法(PID 和模糊调节技术) 。智能温度PIDxh 软件可以自动计算出不同温控所需要的PID 参数,过程控制的PID 调节可以达到50μs 一个回路。

  PCC产品使用开放式总线结构,与各种系统通信方便,提供支持CAN BUS 的硬件模块并自带CAN 接口。因此,很容易实现CAN BUS 物理连接,并通过相应的通信程序实现PCC系列产品之间的通信。帧驱动器(frame driver) 是贝加莱公司为实现与第三方设备之间进行通信而设计的软件工具箱。由于Frame Driver 是一个自由通信协议,编写串行接口(如RS - 232 ,RS- 485/ 422 ,TTY等) 的通信协议非常方便。通常的数据通信,用户必须对端口的细节了解很清楚才能通过编程实现对接口各管脚的操作。而帧驱动器将这些操作集中起来,用户不必知道接口的细节就可以通过帧驱动器命令直接传输读写数据。

  PCC提供了结构化语言PL2000 ( 类似C 语言) ,也可使用梯形图(LAD) 、指令表(STL) 编程,且具有强大的数据运算和处理能力。

  本文介绍PCC在铝塑复合管生产线中对4 台挤出机的控制。

  1 系统的构成和功能

  图1 为PCC控制4 台挤出机系统框图。4 台挤出机都是单螺杆挤出机:内管挤出机螺杆主电机为75kW直流电机;内管涂胶挤出机螺杆主电机为55kW直流电机;外管涂胶挤出机螺杆主电机为55kW直流电机;外管挤出机主电机为45kW直流电机。4 台挤出机的螺杆直流电机都是由数字式直流调速系统E590 驱动,它们通过主站处理器模块的IF2 口以RS - 422 与PCC通信。牵引机主电机是三相交流电机,均由Lenze 变频器驱动,它们通过主站接口模块的IF2 口以RS - 485方式与PCC 通信。上位机为贝加莱公司的PROVIT -5000 系列工控机,用于在人机界面上对全线设备集中监控。挤出机的控制选用PCC2005 作为主站, 两台PCC2003 作为从站,包括电源模块PS465 、处理器模块、接口模块、温度输入模块、模拟量输入模块、模拟量输出模块、数字量输入模块和数字量输出模块。工控机、主站和两个从站通过CAN 现场总线实现实时通信。

  图1 挤出机控制系统框图

  2 系统的软件设计

  用PCC编制用户程序相对于传统PLC 的一个显著优点是它的多任务处理能力。它非常适合于控制功能复杂、对实时性要求高的设备。整个系统的控制程序采用PL2000 语言和LAD(梯形图) 混合编制,根据其不同功能编出独立的程序块,并按实时性要求设定优先级。同时,编程环境中包含丰富的函数库及功能块,大大减轻了开发人员的工作量。

  2. 1 温度控制程序

  在铝塑复合管生产中,为了增加聚乙烯的流动性、减少挤出机的负荷,希望提高挤出温度;但温度过高,尤其是在挤出机螺杆转速较低、塑料在机筒和模具内停留时间过长会使聚乙烯分子链受到破坏而影响管材质量。PL2000 编程语言提供PIDxh 函数,可以控制多路温度调节。挤出温度采用集中控制,每台挤出机的机筒上有4 个热电偶,机头上有一个热电偶,测温信号直接接在PCC的温度模块上,用PID温控软件实行独立的回路控制。在软件中还采取了自学习功能,即自动记录不同时段、不同原料、不同模具下系统所需的参数,并存放于PCC的数据模块中。软件可以自动计算出不同温控所需的PID 参数,温度控制精度可以达到±1 ℃。

  2. 2 通信控制程序

  通信程序是很关键的。在工控机、PCC主站和从站之间以及主站和挤出机的直流调速系统之间、主站与牵引机的变频器之间等都是靠通信进行数据交换的。工控机、主站和从站之间通过CAN 总线实现通信。CAN 通信程序中主要用到下述函数: 用CANopen() 实现CAN 控制器的初始化并申请传输数据所需的资源;用CANwrite() 函数对将被发送的数据进行写操作;用CANread() 函数进行读取数据的操作; 用CANdftab() 函数可创建一个包含CAN 总线数据的变量列表,用户可以通过事件变量来进行数据读写;周期性的数据读写则用CANrwtab() 函数进行处理。

  使用Frame Driver 编写与直流调速系统和变频器的通信协议。在图1 中,4 台E590 直流调速系统分别驱动内管挤出、内管涂胶挤出、外管挤出、外管涂胶挤出直流电机,它们均通过主站处理器模块的IF2 口以RS - 422 与PCC通信,由PCC统一调整控制参数和给定值。5 台Lenze 变频器分别驱动内管牵引、内管涂胶牵引、焊管牵引、铝管牵引和成材牵引的三相交流电动机,它们通过主站接口模块的IF2 口以RS - 485 方式与PCC进行通信。通信时先使用函数FRM_ Xopen(enable ,adr (device) ,adr (mode) ,adr (config) ,status ,ident)初始化;发送数据时,先向帧驱动器申请一个缓存区,这时要用到FRM_ gbuf (enable , ident , status , buffer , buflng) 函数;然后将要发送的数据写入申请得到的缓存区中,用strcpy(outbufadr ,“Frame Driver Output Test”) 函数或memcpy() 函数;后命令帧驱动器传输数据,用FRM_writ (enable ,ident ,buffer ,buflng ,status) 函数。

  接收数据的过程基本相反。首先通知帧驱动器从接口读一帧数据并把它放在一个缓存区中,使用函数FRM_read (enable ,ident ,status ,buffer ,buflng);然后将数据从缓存区中拷贝到工作区,用memcpy() 函数;后要释放缓存区以便再用,用FRM_rbuf () 函数。由此可见,使用PCC的帧驱动器编写与第三方的通信程序是很方便的。

  2. 3 挤出量控制

  挤出量的控制是控制挤出的铝塑复合管内外管的大小。挤出量是按管径和牵引速度用公式计算出来的,以内外管径符合标准、表面光洁为宜。挤出量是由PCC主站处理器上的通信端口IF2 以RS - 422 与E590直流传动系统通信,调节直流电机的转速(即挤出机螺杆的转速) 来调整的。

  2. 4 牵引速度控制

  牵引速度的控制在铝塑复合管生产中至关重要,它直接影响挤出的管材尺寸和焊接质量。如牵引速度太慢,焊头在铝带上停留的时间长,易将铝带焊穿;如牵引速度太快,焊接速度跟不上,则焊不牢。牵引速度还要与挤出速度相匹配,如牵引速度过大,管子表面会出现竹节现象;牵引速度过低则会使管材直径过大而超差。系统中牵引速度是根据焊接速度和挤出速度按一定的公式计算出速度给定值,通过主站接口模块的IF2 口以RS - 485 的通信方式送到各变频器的,并在软件中将设定速度与实际速度进行比较,形成速度闭环控制。

  2. 5 辅助控制程序

  生产现场还有些辅助设备,如预热、冷却、剪切、卷绕设备等。这些设备对控制的实时性要求不高,单独编程按普通任务执行。

  实际生产中还需要检测运行中的故障,对设备进行保护,并提供多种报警模式。挤出机中的报警大致分为温度报警、直流调速系统和变频器或电机报警以及机械动作报警。温控采用的是软件集中控制,可以直接控制系统每一路的加热单元,以随时报告加热的异常状态。在人机界面上可以显示实际温度和设定温度,从而对各加热单元进行监视,并实现超温或低温报警。传统控制系统无法显示故障原因,因而维修起来困难。而在该系统中,由于能够显示故障位置和故障原因,检修维护非常方便。


展开全文
优质商家推荐 拨打电话