梅州西门子专业授权代理商
SIMATIC S7-1200,CPU 1212C, 紧凑型 CPU,DC/DC/DC, 机载 I/O: 8 DI 24V DC;6 个 24V DC 数字输出; 2 AI 0-10V DC, 电源:直流 20.4-28.8V DC, 程序存储器/数据存储器 75 KB
概述S7 入门级控制器,带有基本扩展选件
可通过以下方式扩展:
1 个信号板 (SB)、电池板 (BB) 或通信板 (CB)
2 个信号模板 (SM)
多 3 个通信模块 (CM)
设计紧凑型 CPU 1212C 具有:
3 种设备类型,带有不同的电源和控制电压,集成的电源,可作为宽范围交流或直流电源(85 至 264 V 交流或 24 V 直流)集成的 24 V 编码器/负载电流源:用于直接连接传感器和编码器。300 mA 输出电流,也可用作负载电源,8 点集成 24 V 直流数字量输入(漏电流/源电流(IEC 1 型漏电流))。6 点集成数字量输出,24 V 直流或继电器,2 点集成模拟量输入,0 至 10 V,2 点脉冲输出 (PTO),频率高达 100 kHz。脉冲宽度调制输出 (PWM),频率高达 100 kHz,集成以太网接口(TCP/IP native、ISO-on-TCP)。4 个快速计数器(3 个大频率为 100 kHz;1 个大频率为 30 kHz),带有可参数化的使能和复位输入,可以同时用作带有 2 点单独输入的加减计数器,或用于连接增量型编码器。
通过附加通讯接口扩展,例如,RS485 或 RS232,通过信号板使用模拟或数字信号直接在 CPU 上扩展(保持 CPU 安装尺寸),通过信号模块使用各种模拟量和数字量输入和输出信号扩展。可选存储器扩展(SIMATIC 存储卡),PID 控制器,具有自动调谐功能,集成实时时钟,中断输入。
西门子PLC的几种通信方式?
一、PPI通讯
PPI协议是S7-200CPU基本的通信方式,通过原来自身的端口(PORT0或PORT1)就可以实现通信,是S7-CPU默认的通信方式。
PPI是一种主-从协议通信,主-从站在一个令牌环网中。在CPU内用户网络读写指令即可,也就是说网络读写指令是运行在PPI协议上的。因此PPI只在主站侧编写程序就可以了,从站的网络读写指令没有什么意义。
RS485串口通讯
第三方设备大部分支持,西门子SPLC可以通过选择自由口通信模式控制串口通信。简单的情况是只用发送指令(XMT)向打印机或者变频器等第三方设备发送信息。不管任何情况,都必须通过SPLC编写程序实现。
当选择了自由口模式,用户可以通过发送指令(XMT)、接收指令(RCV)、发送中断、接收中断来控制通信口的操作。
数据块DBAI数据,类型REAL,与机接口;DBAO数据,类型REAL,与机接口;DBDI数据,类型BOOL,与机接口;DBDO数据,类型BOOL,与机接口;DB设备运行时间及流量累计,类型REAL,与机接口;DB报好消息,类型BOOL,与机接口;DB类型REAL,中间寄存器;DB类型INT,中间寄存器;DB类型WORD,中间寄存器;DB类型BOOL,中间寄存器;DB之后用作与设备通讯用,例如MODBUS通讯等;DB之后用作调用FB块时的背景数据块;M区也作为中间变量。
MPI通讯
MPI通信是一种比较简单的通信方式,MPI网络通信的速率是19.2Kbit/s~12Mbit/s,MPI网络多支持连接32个节点,大通信距离为50M。通信距离远,还可以通过中继器扩展通信距离,但中继器也占用节点。
MPI网络节点通常可以挂S7-200、人机介面、编程设备、智能型ET200S及RS485中继器等网络元器件。
西门子PLC与PLC之间的MPI通信一般有3种通信方式
1、全局数据包通信方式
2、无组态连接通信方式
3、组态连接通信方式
C与DCS的基本结构是一样的。PLC发展到今天,已经移植到计算机系统控制上了,传统的编程器早就被淘汰。小型应用的PLC一般使用触摸屏,大规模应用的PLC使用计算机系统。和DCS一样,控制器与IO站使用现场总线(一般都是基于RS485或RS232异步串口通讯协议的总线方式),控制器与计算机之间如果没有扩展的要求,也就是说只使用一台计算机的情况下,也会使用这个总线通讯。但如果有不止一台的计算机使用,系统结构就会和DCS一样,上位机平台使用以太网结构。这是PLC大型化后和DCS概念模糊的原因之一
我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗,比如大功率开关电源,由于电流过大所以需要使用电流互感线圈来监测电流以减少损耗. 当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10/N)R=1V,在电阻中消耗的功率为P=(1V)2/R。我们假设消耗的功率为50mW(也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Ω,如果采用20Ω的电阻,由欧姆定律可得副边匝数N=200。 由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此Ae可以很小,而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由200匝的绕组所占体积来确定。你可以用40号的导线流过500mA的峰值电流,但是这种导线实在太细,一般的变压器厂家不会为你绕制。 现在的匝数为200,我们需要AL=16mH/200=400nH的磁环,用普通的小铁氧体磁环就可以了,这种铁氧体磁环是很容易找到的。 |
断路器是负荷开关的一种,具有短路和过载保护功能,其短路保护功能靠电磁线圈实现。因其保护功能完善,维修、使用方便,在电力系统应用广泛。本文介绍断路器分合闸线圈烧毁原因及预防措施。 分闸线圈烧毁的原因 1.分闸电磁铁机械故障。线圈松动造成断路器分闸时电磁铁位移,使铁心卡涩,造成线圈烧毁;或由于铁心的活动行程短,当接通分闸回路电源时,铁心顶不开脱扣机构使线圈长时间通电而烧毁。 2.断路器拒分。控制回路正常时,断路器出现拒分的故障均为连杆机构问题,如顶点调整不当,使断路器分闸铁心顶杆的力度不能使机构及时脱扣;或由于防护闭锁机构未动作,致使线圈过载,造成分闸线圈烧毁。 3.辅助开关分闸状态的行程调整不当。断路器处于分闸状态时,应调整辅助开关使其在分闸状态的行程范围内。然而,在调整断路器开距和超行程等参数时,断路器分闸的初始状态未做相应的调整,将导致辅助开关不能正常切换分闸回路,而使分闸线圈烧毁。 4.分闸控制回路辅助开关触点使用不当。当断路器合闸时间极短,远小于断路器的分闸时间时,断路器未来得及脱扣就已合闸到位,此时延时触点的延时作用将失去意义。相反,该延时触点在分闸过程中,由于辅助开关动静触头绝缘间隙较小,经常出现拉弧现象,将使辅助开关的触头烧毁,继而引起分闸线圈烧毁。 5.保护控制装置故障。分闸指令是由保护控制装置发出的,若装置内的分闸继电器有故障,或分闸控制回路辅助开关触点动作行程较大,造成分闸指令不能及时退出,就会使分闸线圈长时间带电而烧毁。 6.分闸回路电阻偏大。分闸线圈回路绝缘降低,或是控制回路线径过小造成电阻偏大,使得分闸控制回路电压降较大,导致电压达不到线圈分闸动作的值,使分闸线圈长时间带电烧毁。 防止分闸线圈烧毁的措施 1.将分闸回路的延时动合触点改接为一对动合触点,经常检查辅助开关的触点及辅助开关的拐臂螺丝,正确调整辅助开关的位置,使辅助开关与断路器分合闸位置正确、有效地配合。 2.固定好分闸线圈,经常检查分闸线圈的铁心有无卡涩。 3.保护控制装置发出的分闸指令时间,既要能够使分闸线圈工作,又要能够在很短的时间内退出分闸指令。 4.在每年的检修工作中,应正确调整好断路器的连杆机构,经常检查断路器的自由脱扣是否正常,低电压动作试验时,是否能在额定电压的30%~65%间可靠跳闸。 合闸线圈烧毁的原因 1.断路器机构故障。当断路器合闸控制回路正常时,断路器本体的内导电杆、传动连杆等卡涩,或是因为断路器操作机构连接配合不好,以及由于防护闭锁连锁机构未动作,顶点调得偏高,导致断路器拒合闸,使合闸铁心过载,引起合闸线圈烧毁。 2.辅助开关行程位置不当。正常合闸时,断路器的合闸接触器的线圈回路与辅助开关的动断延时触点串联。合闸后,辅助开关触点自动切断合闸回路,辅助触点打不开或拉弧,合闸接触器通过重合闸回路或绿灯回路自保持,合闸线圈长时间带电而被烧毁。 3.保护控制装置故障。合闸指令是由保护控制装置发出的,若保护装置内的合闸继电器发生故障,或合闸控制回路辅助开关触点动作行程较长,造成合闸指令不能及时退出,就会使合闸线圈长时间带电而烧毁。 4.合闸接触器故障。断路器合闸时,由于合闸电流比较大,控制回路不能直接控制合闸线圈,只能通过合闸接触器间接接通合闸线圈,因此当合闸接触器发生故障时,不能及时断开,使合闸线圈通电时间过长,烧毁线圈。另外,合闸接触器的线圈电阻变大,会使合闸接触器正常通电时吸合力不足,主触点产生拉弧,合闸接触器的主触点接触电阻增大,间接地影响断路器合闸线圈的励磁电流,使合闸线圈的励磁力度不足,铁心不能正常动作,合闸线圈过载而烧毁。 5.合闸电源容量下降或者合闸控制回路的导线电阻偏大,使合闸瞬间合闸线圈两端电压低于额定电压80%而烧毁。 防止合闸线圈烧毁的措施 1.加强合闸接触器的检查、维护。每次小修、周期大修都要检查其动、静触头表面接触面积、接触压力等。 2.调整辅助开关的位置。 3.保护控制装置发出的合闸指令时间能足够使合闸线圈工作,且能在规定的时间内退出合闸指令。 4.要求值班员在许可工作前,必须取下控制回路熔断器,并将重合闸投切回路打开,避**修、试验过程中造成合闸线圈烧毁。 |