浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
绵阳西门子一级代理商

绵阳西门子一级代理商

西门子S7-300plc有V存储区吗?听到这个问题,绝大多数人都会笑起来,V存储区不就是S7-200的变量存储区吗?S7-300哪里有什么V区?有没有搞错?近有个网友在网上询问这个问题:“我的疑问也是这个V区,被一堆人鄙视的说是200的吧。另外我有个疑问没见有谁用这个区域编程,麻烦有类似的例子给露露脸啊”,显出了几分急切和无奈。
    我也曾经被这个问题困扰过,下面向大家介绍我寻找答案的过程。
    首先在STEP 7的帮助中搜索“V区”,在参数类型ANY和POINTER的帮助中有个存储区编码表,其中就有V区,其代码为16#87,对V区的描述为“先前的本地数据”。这几个字像天书一样,可能很难有人能看懂。
    为了确认翻译的准确性,我将STEP 7切换到英语,“先前的本地数据”的英文为“Previous local data”。local data一般翻译为“局部数据”,看来翻译没有问题。德国人的英语水平很高,德国大学图书馆的书籍和杂志大多数都是英语的,不用怀疑德语翻译为英语时失真。
    V区与参数类型ANY和POINTER有关,打开STEP 7的帮助目录中的附录,选中其中的“\数据类型和参数类型\参数类型\参数类型POINTER的格式”,可以看到参数类型由6个字节组成,0号和1号字节是DB块的编号,不是数据块内的地址时为0。2~5号字节的格式与寄存器间接寻址的格式相同。下面是寄存器间接寻址的32位指针格式:
                               x000 0rrr 0000 0bbb bbbb bbbb bbbb bxxx
    其中第0~2位(xxx,低位为第0位)为被寻址地址中位的编号(0~7),第3~18位(16个b)为被寻址地址的字节的编号。第24~26位(rrr)为被寻址地址的区域标识号,指针的高位x 为0时,为区域内的间接寻址,高位x 为1时,为区域间(交叉区域)间接寻址。
    参数类型ANY可以用来传递一片连续的地址区,由10个字节组成。ANY和POINTER用于在块调用时传递输入、输出参数。为了揭开V区之谜,编写了FC1,将地址区中相邻的若干个字累加。地址区的起始地址由参数类型为POINTER的输入参数Start_Addr提供。P# DB2.DBX0.0也可以改写为DB2.DBX0.0。在OB1中调用FC1:
      CALL  FC     1
       Start_Addr :=P#DB2.DBX0.0    //数据区起始地址
       Number   :=5                //需要累加的字数
       Result     :=DB2.DBD10      //保存运算结果的双整数
    图1是运行时监控FC1的结果,累加器1(STANDARD)中的数据为十六进制显示格式,AR1是地址寄存器1。终于看到了AR1中的V区地址了!


    图1中条指令的P#表示指针,第2个#号表示局部变量。P##Start_Addr就是调用FC1时,用输入参数Start_Addr传送给FC1的指针P#DB2.DBX0.0(16#0002 8400 0000)存放的地址。P##Start_Addr(16#8700 00a8)低字节16#a8对应的二进制数为2#10101000,其字节部分为2#10101,即十进制数21,高字节16#87(2#1000 0111)表示存储区为V区。
    条指令将P##Start_Addr送给累加器1,第二条指令将累加器1中的数据传送到AR1,传送后AR1中的地址为V21.0(即16#8700 00a8)。
    那么V区到底是什么呢?根据帮助中的解释“先前的本地数据”(Previous local data),猜想与局部数据堆栈有关。执行每个块时,它都有自己的临时局部数据。在OB1调用FC1时,OB1的临时局部数据被保存到局部数据堆栈,FC1则使用它自己的临时局部数据区,OB1的局部数据成为“Previous local data”(以前的局部变量)。根据上述分析,V区很有可能是调用FC1的OB1的局部数据区。
    怎样才能证实这个猜想呢?好能看到AR1中的地址为V21.0时,OB1的局部数据。好在STEP 7的监控功能可以查看块调用时保存在堆栈中的数据。为了能看到某条指令执行后OB1的局部数据,在FC1的第2条指令处设置一个断点。执行完第2条指令后,CPU进入HOLD模式,此时打开CPU模块信息对话框的“堆栈”选项卡,选中B堆栈中的OB1,点击“L堆栈”按钮,打开L堆栈对话框,OB1的局部数据堆栈如图2所示。

 

由图1可知,因为指针常数P#V21.0(16#8700 00a8)被送给AR1,监控区中的AR1列显示V21.0。此时OB1调用FC1的POINTER格式的实参P#DB2.DBX0.0(16#0002 8400 0000),存放在从OB1的局部变量LB21开始的6个字节中(见图2)。因此AR1中的P#V21.0表示指针常数P#DB2.DBX0.0的值存放在OB1的局部变量区中的地址,换句话说,V区就是调用FC1时OB1的局部数据区。
    难怪“没见有谁用这个区域编程”,V区用于监控,在编程时没有使用它。
    后我们来总结一下块调用时的参数传递过程。如果输入参数为简单数据类型,例如字节、字、整数和双整数,可以通过32位(4个字节)的累加器1直接传递参数。而ANY和POINTER分别为10个和6个字节,不能用累加器1直接传递。因此将这些参数的实参(例如16#0002 8400 0000)暂时保存在OB1从V21.0开始的局部变量中。在被调用的FC1中, P##Start_Addr提供了保存参数Start_Addr的实参的地址V21.0,在FC1中用寄存器间接寻址指令“L  W [AR1,P#0.0]”来读取POINTER实参的个字(数据块编号),用指令“L  D [AR1,P#2.0]”来读取POINTER实参的2~5号字节(数据块内的变量地址P# DBX0.0)。间接寻址的操作数地址等于方括号中AR1的地址值加上逗号后面的地址偏移量。
    说到这里,我们可以看到传递POINTER参数类型的思路是非常清晰的,“Previous local data”用词是准确的,只不过所用的笔墨太少,背后的复杂过程需要我们猜想和验证。
    解决了这个问题后,有一些感触:
    1.由于语言和思维方式的差异,老外写的用户手册有的地方很难理解,这并不奇怪。奇怪的是网上有一些高手的“用户手册论”。用户手册肯定不是的,不可能回答所有的问题,有的问题还需要我们设法去探索和发现,包括用程序来验证我们的假设。
    2.这个问题的解决使我惊叹STEP 7强大的功能,如果没有断点和监控堆栈的功能,是不可能搞清楚这个问题的。还有别的PLC有这些功能吗

主控继电器(Master Control Relay)简称MCR。
主控继电器用来控制MCR区内的指令是否被正常执行,相当于一个用来接通和断开“能量流”的主令开关。有关指令:
MCRA:激活MCR区指令;
MCRD:取消MCR区指令;
MCR(:打开MCR区指令,在MCR堆栈中保持该指令之前的逻辑运算结果RLO(即MCR位);
MCR):关闭MCR区指令,从MCR堆栈中取出保存的逻辑运算结果RLO;
MCR(,MCR)指令必须成对使用,以表示受控临时“电源线”的形成与终止。
例:
MCRA       //激活MCR区
A  I0.2
MCR(       //RLO保存到MCR堆栈,打开MCR区,I0.2=1则MCR位为1,反之为0
A  I3.1
=Q 4.0     //如MCR位为0,不管I3.1的状态如何,Q4.0被置为0
A  I0.5
JNB -001
L  MW20
T  QW10    //如MCR位为0,MW20内容送入QW10
-001:NOP0
)MCR      //结束MCR控制区
MCRD       //关闭MCR区
A I1.1
=Q4.1      //这两条指令在MCR区之外,不受MCR位的控制
在此,在转帖有关例题:
MCR指令叫做主控指令,简单地讲是有这么一个MCR的栈区。在这个栈区内的操作不仅受分步条件控制,还可以用MCR的ON或OFF来进行总控制!如:
STL Explanation
MCRA //Activate MCR area.
A I 1.0 
MCR( //Save RLO in MCR stack, open MCR area. MCR = "on" when RLO=1 (I?.0 ="1"); MCR = "off" when RLO=0 (I 1.0 ="0")
A I 4.0 
= Q 8.0 //If MCR = "off", then Q 8.0 is set to "0" regardless of I 4.0.
L MW20 
T QW10 //If MCR = "off", then "0" is transferred to QW10.
)MCR //End MCR area.
MCRD //Deactivate MCR area.
A I 1.1 
= Q 8.1 //These instructions are outside of the MCR area and are not dependent upon the MCR bit.
在上例中,用I 1.0来作为MCR取激活的条件,既将A I 1.0逻辑结果RLO存入MCR区,MCR区是否为NO取决于RLO,RLO=0时MCR区为NO,在此条件下,区内的逻辑结果受MCR总控,既如A I 4.0 = Q 8.0一句,只要MCR区为NO,Q 8.0即为零,而不管I 4.0的状态如何!


展开全文
优质商家推荐 拨打电话