浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
吕梁西门子S7-1200代理商

吕梁西门子S7-1200代理商

1  引言
   由于实验室原有的控制系统使用的是十年前的人机界面和PLC,故其硬件均已老化,性能下降,在运行的过程中经常出现死机、黑屏、重启动,甚至某些画面参数不能修改;同时由于无相应的PLC编程器、编程软件和人机界面软件,因此可维修性也差。为了解决这些问题,我们采用西门子S7-200PLC和北京亚控公司的组态王6.05工控组态软件 的控制方案对小丸包衣制粒机的控制系统作了改进。

2  小丸包衣制粒机系统组成
    小丸包衣制粒机系统组成如图1所示。小丸包衣制粒机是专门用于实验室或车间小批量生产的。药粉或类似的物料能在流化床中进行干燥、制粒以及包衣等过程。流化床物料容器底部装有筛网,药粉或小丸颗粒等类似的物料被盛放在筛网上。流动的空气经过滤处理后经容器底部的筛网向上流过,当流速达到一定速度时,颗粒(药粉)就会被空气托起,床内粒子就开始流化起来,形成流化床。流化床内的颗粒(药粉)在容器中剧烈搅动,并延伸到容器的扩展区,细微的粉末或轻微的颗粒则被粘附在袋式过滤器上。为了防止袋式过滤器的堵塞,控制滤袋升降的气缸会有一个间歇的抖动操控。空气经过袋式过滤器、控制风量大小的风门和风道被风机引出室外的大气中。在这个过程中,流化床容器内的微粒能完全充分的与空气流接触,并且搅动剧烈,因而能够很好的完成充分干燥,良好制粒,精致包衣等制药过程。

图1     小丸包衣制粒机系统组成

 

3  系统主要控制要求
    小丸包衣制粒机操作的基本控制要求包括五个方面。
(1) 产品温度控制
    通过控制进风温度来控制产品温度。进风温度控制精度为±3℃,产品温度控制精度为±2℃。
(2) 进风风量的控制
    控制精度为±40m3/h。
(3) 雾化压力的控制
    即喷液装置喷射压力的控制,控制精度为±0.1bar。
(4) 密封压力的控制
    产品容器必须与扩展仓密封,形成一个密闭的流化床反应器。采用油压装置进行密封,密封压力在35-70bar之间。
(5) 滤袋的抖动控制
    抖动有单滤袋抖动和双滤袋抖动,有手动抖袋和自动抖袋。

4 控制方案的选择
4.1  两种不同方案的比较
    小丸包衣制粒机的改进有两种方案可供选择,见表1:

    在满足控制要求的前提下,控制系统硬件设备的选择应该追求佳的性能价格比。由于该机器的使用频率不高,平均每月一次,同时环境良好,因此采用PC+PLC的控制方案。当机器不用时,PC机可作它用。换句话说,利用公用PC机即可作人机界面。

4.2  PLC硬件配置
    根据前面对控制系统的要求,选用西门子S7-200系列PLC。S7-200系列PLC体积小,重量轻、安装方便、功能齐全、配置灵活、运行可靠、编程简单,具有可观的经济性和更强的适应性,完全可以满足上述控制要求。

4.3  人机界面组态软件
    组态软件选择北京亚控公司的组态王6.05。这是一款具有易用性、开放性和集成能力的通用组态软件。组态王使用简单,适合各种简单和复杂的任务。只需要进行填表式操作,即可生成适合于用户的“监控和数据采集系统”,可有效用于控制自动化过程, 组态王6.05版是在bbbbbbs2000的平台上运行的,因此选用组态王是较为完善和方便的选择。整个控制系统的构成如图2所示:

 

图2     控制系统的构成


5  系统硬件设计
    控制系统选用西门子S7-200系列PLC,选用了中央处理单元模块CPU224、数字量扩展模块EM223、模拟量输入模块EM231、模拟量输出模EM232、模拟量输入输出模块EM235。其中的中央处理单元模块CPU224外部接线图如图3所示、输入输出地址分配如表2所示。

图3     PLC外部接线图

图4     主程序框图

 

6  系统软件设计
6.1  PLC程序设计
    主程序框图如图4所示,其中子程序0为初始化程序,子程序1为检查扩展模块是否正常,子程序2为模拟量采样子程序,子程序3为对各执行设备输出的采样,子程序4为对各被控量和执行设备异常的报警子程序。由于篇幅所限,各子程序框图在此从略。

 

 

6.2  人机界面组态
    组态软件选择北京亚控公司的基于bbbbbbS2000平台的工业控制组态软件“组态王”6.05版。只需要进行正常通信设置和填表式操作即可完成人机界面组态。运行组态画面程序和PLC用户程序,根据小丸机操作的顺序功能,点击组态画面上的各个按钮,通过模块上各输出位对应的发光二极管,观察各输出信号的变化是否满足设计的要求。组态画面设计了设备控制、过程控制、过程参数等画面。其中设备控制画面如图5所示。

图5     设备控制画面


     
7  结束语
    由于S7-200系列PLC具有体积小、系统集成度高(电源、主机、机架、开关量输入输出等功能集成一体)、配置灵活、接线简单、安装方便、抗干扰性强等特点,同时与同性能的产品相比,很好的满足了此次系统改造经济上技术上的要求。新系统人机界面友好(全中文界面),操作简单快捷,运行可靠稳定,受到广大用户的好评。

  SLC500是罗克韦尔自动化公司经典的中小型框架式可编程逻辑控制器,具有强大的处理能力,通讯网络、功能模块、存储容量都可以灵活地进行选择和配置,稳定可靠、高性价比、易用的特点多年来在洁净厂房的控制领域有着广泛的应用。

1 项目概况
1.1 BMS系统控制区域
    芯片装测试智能建筑管理系统BMS(Building Management System)系统主要控制以下几大区域:
    (1)洁净室:提供符合洁净度以及温湿度的生产主厂房;
    (2)动力厂房:提供生产需要的冷冻水、冷却水、热水和纯水;
    (3)仓库:成品堆放周转区;
    (4)办公楼。
1.2 BMS系统工艺与设备
    (1) 暖通空调HVAC。(Heating Ventilation and Air-Conditioning),HVAC用于控制洁净室、办公区、仓库区域的温度、湿度、露点以及压力等参数;执行设备有空调机组、调节阀、风机、 泵。空调机组分为新风空调、循环风空调、一般空调等设备。根据半导体洁净设计规范,洁净室要求温度20~26℃,露点:9~11℃;办公区要求温度 20~26℃;仓库区要求温度20~26℃,湿度40%~60%。
    (2)冷热源系统。冷冻水系统为工艺冷却水系统和HVAC系统提供低温冷冻水;锅炉和热回收系统则为BMS系统提供热水。
    (3)其它子系统。包括排放热量和水汽的排风系统、压缩空气系统、真空系统、工业水系统、纯水系统、废水系统、应急燃油发电系统等。
为了节能,系统对这些被控的风机和泵采用变频器进行控制。

2 BMS自动控制系统的设计
2.1 系统设计
    参见图1BMS系统整体结构图。

图1 BMS系统整体结构图

    (1) BMS系统功能。工艺过程的画面实时显示和数据记录;过程设备的控制和参数设置;设备诊断和报警,通过GPRS modem以短消息的形式把信息发送到相关人员的移动电话上。BMS系统所有设备的操作分为就地Local(硬手动)和远程Remote两种。在 Local时,只能通过现场的MCC柜对风机和泵进行就地操作,BMS系统仅仅显示其状态;当设备处于远程Remote控制位置时,BMS对此设备的控制 有2种模式,即自动模式和手动模式。设备处于自动模式时,由BMS根据逻辑和现场工况自动启动/停止该设备;设备处于手动模式时,操作员可以用画面上的启 动/停止按钮启/停该设备,并且需要操作进行确认。

    (2)BMS系统硬件。系统由15套冗余SLC500系统,3套单机SLC500和11套MiroLogix1200微型PLC组成。控制编程软件 采用RSLogix500,HMI软件系统采用RSView32的ADS(服务器/客户端)系统,同时系统使用数据引擎软件RSSQL 将重要的工艺参数记录到SQL数据库供远程维护和管理。
系统11套冗余的的SLC500的CPU之间采用DH+通讯网络,然后通过双 Ethernet/DH+的网关连接到Ethernet网络,再连接到冗余的服务器Server A和Server B,微型PLC经过串口/以太网网关连接到HMI服务器。其它的PLC直接通过CPU的以太网口连接到HMI服务器。三方设备如冷冻机组和锅炉等采用 Modbus通讯接入系统进行监控。
2.2 系统特点
    SLC500控制器+FLEX远程RIO的结构形式。
    (1)功能强大的处理器。
    内存容量多可达64K字,数据/程序内存动态分配,系统资源如定时器等只取决于系统的内存容量;
    强大的I/O容量,大可达8192点I/O;
    提供丰富的诊断信息。
    (2)稳定可靠。
     SLC500提供系统冗余功能;
     Flex I/O模块可以带电插拔;
    (3)灵活的系统结构和通讯网络。
    远程I/O链RIO通讯速度快230K/bps,远距离3300m(57.6K/bps);适合于分布式应用;
    灵活的通讯网络选择:CPU内置有DH+/Ethernet/串口;
     广泛的开放的标准现场总线选择:EtherNet/IP、 DeviceNet、 ControlNet。
2.3 控制策略
    (1) HVAC系统控制。HVAC系统主要是为了保持被控区域特定的温度、湿度、露点以确保产品的质量,控制压差以防止洁净室被室外粉尘的污染并采用VFD技术 达到节能的目的;同时也是为了向洁净室补充一定的新风以保证室内空气质量。典型的新风空调MAH控制原理示意如图2所示。新风首先通过预虑网,经过降温除 湿(夏天)、加热(冬天)、再经高再热终滤网送入各风管,后经FFU送风口过滤后送入控制区各房间。

图2 MAH控制原理示意图

    (2) 焓值(加热)控制回路。焓值是温度和湿度的综合,是一个能量单位,由温度和湿度经过运算得出。我们设定一个焓值的高限和低限,当室外的焓值剔的数值

    En=1.01×t+d×(1.84×t+2500) (1)式中:
    En ——焓值(kj/kg)
    t ——加热盘管后的测量温度TET-03(℃)
    d ——室外新风的含湿量NET-04(g/Kg)
    (3) 压力控制回路。为了避免室外污物对洁净室的污染,系统要求洁净室和非洁净区之间必须是正压。取两个压力变送器PT-01(设置有A/B两个测点)的平均值 或正常无故障的压力变送器的压力值作为PV,根据相关标准通常该压力回路的SP>5Pa,经过PID运算(SC-01)之后,控制变频器的输出频率 从而改变风机的转速以达到控制正压的目的。
    (4)露点控制回路。这是一个典型的串级控制回路,多个测点的露点值的平均值(通常会设置多于4个,在 剔除坏点信号之后)作为主回路的露点PV,主回路的控制输出CV经过运算之后作为副回路的SP,副回路的PV则采用MAH风管出口的露点。副回路的SP既 可以用主回路的直接百分比输出,也可以经过一定的变换来得到代表工程量的数值,比如副回路PID的用工程量的设定值SPs可用表达式2:
    SPs=SPm+(k×CVm-1)×x (2)式中:
    SPs ——副回路的设定值℃
    SPm ——主回路的设定值℃
    CVm ——主回路控制输出(0%~)
    x ——露点控制的偏差范围
    k ——调整系数
    假定SPm为10℃,k为1.0,x为1.0℃,则实际的HVAC的露点控制副回路的设定值在 9.0~11.0℃之间。该控制回路是一个典型的分程控制过程,加湿和除湿回路(制冷)互斥不能同时起作用。系统在焓值小于焓值控制低限时会启动加湿过 程,大于焓值控制高限时则停止加湿。当在夏季模式由于室外新风湿度会较高,经过冷盘管的除湿过程之后有时会导致MAH出口温度过低从而使得洁净室温度偏 低,因此在在风机之后还有一个再热盘管,通过控制流过再热盘管热水量从而使得MAH出口温度保持在某个范围之内,该温度调节作用靠TC-02来实现。


    (5)洁净室内温度控制回路。洁净室温度控制与二次冷冻水子系统相关,其控制示意如图3所示。

图3 洁净室温度控制

    干冷盘管安装在洁净室的吊顶上,由于封装设备会产生热量,因此较高温度的空气经过干冷盘管换热后再经过滤单元回到洁净室,终使得控制洁净室内温度空间温度 保持在20-℃左右。这个过程是通过图示右侧的TC-20控制回路实现的,每个洁净室通常包含多个这样的冷盘管控制区域。通过冷盘管的二次冷冻水温度被控 制在高于洁净室的露点,因此不会产生结露的情况。BMS系统通过将一次冷冻水和干冷盘管的一部分回水混合后将干冷盘管的进水温度控制在合适的范围内(由 TC-10回路实现)。
HVAC子系统通常会有多台MAH,他们之间会采用几用一备的方式轮流工作,我们称之为qunkong。整个BMS系统有很多子系统的风机/泵都采用qunkong方式来工作,如排风系统的风机,冷却水、冷冻水、工业水系统、仓库等区域的泵。
HVAC系统除了MAH之外,通常还包括一般空调AHU和回风空调RAH。一般空调AHU主要对某个单独区域如实验室等进行控制,而回风空调RHU则是可以对回风量和新风量进行控制以达到既保证空气清新又节能的目的,控制比起MAH来相对要简单一些。
    3.4 SLC500冗余设计
    (1) 冗余系统的结构。SLC500冗余系统的主从机架完全相同,机架上安装有一个CPU和一个或多个BSN模块,其中一对BSN负责DH+通讯的冗余,其它配 对的BSN则实现冗余的RIO数据通讯。通常用DH+网络作为HMI通讯,RIO用于连接远程IO。一个冗余SLC500系统多支持8对BSN模块,亦 即多可接8个RIO通讯链路,每个RIO链多1024点I/O,因此一个SLC500冗余系统多可有8192点I/O。典型的SLC500冗余系统 的结构图如图4所示。

图4 SLC500冗余系统示意图

   (2)冗余系统的运行。SLC500冗余系统的主处理器框架在以下几种情况下会发生主从的切换:
    电源故障或掉电;
    处理器主要故障;
    BSN模块故障(包括RIO链的通讯超时);
    处理器没有处于RUN运行状态。
    通常主从切换的时间在50ms+1个完整的程序扫描时间,假如主处理器的DH+地址为N,则从机为N+1,当发生主从切换时,处理器会发生地址的交换,这样 我们在HMI或编程软件上始终访问的逻辑上的主处理器。处理器之间的数据同步靠同步子程序来实现,主处理器把需要同步的信息传送到BSN的数据交换区,从 处理器则从该交换区读取这些数据。
    处理器经过DH+网络后再通过双Ethernet/DH+网关连接到两个服务器上,因此系统一方面提供了服务器 到处理器的双通讯线路(通过通讯驱动RSLinx的OPC通讯别名或RSView32通讯结点切换),另一方面又提供了双服务器,当任一服务器发生故障 时,操作员站会自动切换到另外一个服务器上,具有很高的可靠性。

4 结束语

    某公司的芯片封装工厂通过采用SLC500冗余系统,实现了整个BMS系统的正常控制,有力地保证了生产的正常进行。实践证明,该厂的BMS控制系统不失为高可靠性、高性价比、易于使用和维护的自动化控制系统。


发布时间:2024-05-08
展开全文
优质商家推荐 拨打电话