浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
梅州西门子S7-300代理商
发布时间:2024-05-08

梅州西门子S7-300代理商

1  引言
原料配料是玻璃生产工艺的核心。对原料进行科学的配比和jingque的计量是保证玻璃质量的首要条件,而配料控制系统设计是影响配料工艺质量优劣的关键[1]。目前,国内玻璃生产线采用的控制系统大都为集散控制系统(DCS),这种控制系统大多为模拟数字混合系统,尚未形成从测控设备到操作控制计算机的完整网络,在技术上有很大的局限性。由于采用单一信号传输以致可靠性差,互操作性差,不能很好的对现场设备进行实时控制。
现场总线是综合运用微处理器技术、网络技术、通信技术和自动控制技术的产物。它把微处理器置入现场自控设备,使设备具有数字计算和数字通信能力,提高了信号的测量、控制和传输精度[2]。近年来,随着现场总线技术的推广,将传统的配料控制系统改进为基于现场总线的控制系统成为科技进步的必然趋势。本文结合工程实际,介绍了一种基于现场总线技术的玻璃配料控制系统的设计并在实际应用中取得了良好的效果。

2  现场总线与现场总线控制系统
现场总线是安装在生产过程区域的现场设备/仪表与控制室内的自动控制装置/系统之间的一种串行、数字式、多点通信的数据总线。其中,“生产过程”包括断续生产过程和连续生产过程两类。或者,现场总线是以单个分散的、数字化、智能化的测量和控制设备作为网络节点,用总线相连接,实现相互交换信息,共同完成自动控制功能的网络系统与控制系统。现场总线发展迅速,目前已经开发出40多种现场总线,其中有影响力的5种分别为FF、Profibus、HART、CAN、Lonworks。
现场总线技术将专用微处理器置入传统的测量控制仪表,使它们具有了一定的数字计算及通信能力,成为独立承担某些控制、通信任务的网络节点。它们分别通过双绞线、同轴电缆、光纤等多种途径进行信息传输,这样就形成了以多个测量控制仪表、计算机等作为节点连接成的网络系统。可以认为,现场总线是通信总线在现场设备中的延伸,允许将各种现场设备,如变送器、调节阀、基地式控制器、记录仪、显示器、PLC及手持终端和控制系统之间,通过同一总线进行双向多变量数字通讯。
现场总线控制系统(Fieldbus Control System)是继集散控制系统(DCS)之后,出现的又一种新型的工业控制系统。它是依靠具有检测、控制、通信能力的微处理芯片,数字化仪表(设备)在现场实现彻底分散控制,并以这些现场分散的测量,控制设备单个点作为网络节点,将这些点以总线形式连接起来,形成一个现场总线控制系统。它是属于底层的网络系统,是网络集成式全分布控制系统,它将原来集散型的DCS系统现场控制机的功能,全部分散在各个网络节点处。为此,可以将原来封闭、专用的系统变成开放、标准的系统。它改变了原有的控制体系结构,使模拟与数字混合的集散控制,更新为全数字的控制,它用开放的现场总线网络,将现场各控制器及智能仪表互联,构成可操作的现场总线控制系统。它把控制功能彻底下放到现场,真正做到控制分散、危险分散、集中监控和全数字化。因此,FCS实质是一种开放的、可互操作性的、彻底分散的、分布式控制系统,因此比DCS又前进了一步。
现场总线控制系统(FCS)与传统集散控制系统DCS构对比如图1所示[3]。



图1     FCS与DCS结构比较

[NextPage]
3  基于Profibus总线的玻璃配料控制系统的设计
3.1  Profibus现场总线概述
PROFIBUS是SIEMENS公司推出的一种开放式现场总线标准,它不依赖生产厂家,各种各样的自动化设备均可以通过同样的接口交换信息。PROFIBUS用于分布式I/O设备、传动装置、PLC和基于PC的自动化系统。PROFIBUS由3个兼容部分组成[4],即PROFIBUS-DP、PROFIBUS-PA、PROFIBUS-FMS。其中PROFIBUS-DP是一种高速低成本通讯连接,用于设备级控制系统和分散式I/O通讯,它的实时性好,数据传输速率9.6kbps-12Mbps,响应时间为几百微妙到几百毫秒。数据传输技术采用RS-485,传输介质是可屏蔽双绞线或光纤。此外,PROFIBUS-DP还提供智能化现场设备所需的非周期性通信以进行组态、诊断和报警处理及复杂设备在运行中参数的确定。经过扩展的PROFIBUS-DP的诊断功能能对故障进行快速定位,诊断信息在总线上传输并由主站采集,并且采用开放式通信网络,允许构成单主站或多主站系统。
PROFIBUS无论在其性能、开放程度、可互换性和互可操作性上还是在其工业业绩上都是比较突出的,因此在总线选型上选择了PROFIBUS总线。
3.2  系统总体结构和工作原理
整个控制系统是以传感器结合PANTHER称重终端构成的电子称重为基础,以S7-300 PLC为控制核心,采用PROFIBUS-DP现场总线和计算机组成一个有机整体,结合外围的执行设备完成对从原料料仓口开始到熔窑料仓的配料输送混合的全过程的自动控制,同时对整个系统的报警,联锁进行显示和监控,并完成对整个系统的配方,生产数据和设备运行状态管理,以满足玻璃生产对混合料的配料要求。基于“减量法”的玻璃配料系统工艺流程如图2所示:



图2     “减量法”玻璃配料工艺流程
该系统具有手动工作方式、自动工作方式(PLC控制)、和在计算机监控状态下的全自动工作方式三种。自动配料时,现场秤量站对料仓中的物料重量进行秤量,系统根据配方要求使用“减量法”控制排料,减量法排料值为配方值,采用两次秤量的方式,当满足排料值时停止排料。排料同时启动传输皮带机,将物料送到混合仓混合,混合时启动自动加水系统进行定时加水。混合达到要求后由原熔皮带机将混合料送到窑头料仓。系统经过这样一次次循环来完成配料任务。
3.3  系统网络控制组成

[NextPage]
以S7-300 PLC为中心,上位机与 PLC之间采用MPI网络连接,PLC与高精度称重仪表之间由PROFIBUS-DP网络连接,称重仪表是系统中的一个从站,PANTHER仪表将通过专用的PROFIBUS现场总线接口完成与SIEMENS的PLC的网络化连接。自动配料系统的网络组成如图3所示:



图3     自动配料系统的网络构成
系统采用STEP V5.2进行硬件组态,实现系统设备的监控、配方管理以及数据的采集和记录等功能。PLC的逻辑处理器选用西门子公司的S7-315 2DP的CPU,该CPU本身带一个MPI通信接口和一个PROFIBUS-DP接口。上位机对下位机进行统一管理,对配方、打印和统计,传送称量配方给下位机,启动称量操作,用监控软件监视下位机的各运行状态,下位机分别对配料系统进行现场控制。
安装在PC上的STEP7编程软件通过MPI与PLC通信,但是这些通信协议并未公开,因此需采用西门子公司提供的PRODAVE工具箱[5]。PRODAVE的动态链接数据库(DLL)提供了大量的基于bbbbbbs操作系统的DDL函数,供用户解决PLC与PC间的数据交换和数据处理问题。上位机用通信函数直接读写PLC中的数据,而不用编写PLC一侧的通信程序。
PROFIBUS-DP接口负责与称重仪表通讯,将称重数据和相关参数及时的输送到主控制站。称重仪表采用应用较广的PANTHER称重终端,此仪表通过现场接线盒采集称重数据,其自带的PROFIBUS-DP接口可方便的完成与PLC的通讯。
3.4  系统控制软件设计
控制系统的开关量输入模块,接收控制现场和操作按钮信号以及马达状态反馈信号,开关量输出模块实现对马达、气缸、电磁阀、指示灯的启停控制,模拟量输出模块控制现场秤量站给料机喂排料的速度。称重仪表的称量结果通过PROFIBUS-DP总线传送至处理器。处理器根据接收到的按钮信号、状态反馈信号、称量值信号,经过运算,发出对现场设备的控制信号,整个系统即以预定的程序自动运行。系统控制软件流程如图4所示:


[NextPage]


图4     配料控制系统软件流程
3.5  系统特点分析
(1) 由于控制结构上采用了FCS,与传统的DCS相比节约了许多硬件设备。使用FCS可以减少1/2~2/3的隔离器、端子柜、I/O终端、I/O卡件、I/O文件及I/O机柜,这样就节省了I/O装置及装置室的空间;同时减少大量电缆,使施工、调试大大简化。
(2) 现场总线可从现场设备获取大量丰富信息,能够更好的满足工厂自动化及CIMS系统的信息集成要求。现场总线是数字化通信网络,它不单纯取代4-20mA信号,还可实现设备状态、故障、参数信息传送。系统除完成远程控制,还可完成远程参数化工作。因此提高了控制系统的精度和可靠性。
(3) 由于现场控制设备具有自诊断与简单故障处理的能力,并通过数字通讯将相关的诊断维护信息送往控制室,用户可以查询所有设备的运行,诊断维护信息,以便早期分析故障原因并快速排除。缩短了维护停工时间,同时由于系统结构简化,连线简单而减少了维护工作量。
(4) 系统采用STEP7软件统一编程和组态,使系统的调试更为简单方便,同时大大降低了系统维护的工作强度。

4  结束语
本系统采用了现场总线这一开放的,具有可互操作的网络将现场各控制器及仪表设备互连起来,构成了现场总线控制系统,同时控制功能彻底下放到现场,降低了调试、安装和维护费用。该系统在梅特勒-托利多称重配料诸多项目上投入使用,其运行状况良好,通讯和控制稳定可靠,因此在工业控制领域中有很大的推广价值。

1  引言
CAN总线是由德国BOSCH公司为现实汽车测量和执行部件之间的数据通讯而设计的、支持分布式控制及实时控制的串行通讯网络。CAN总线通讯的波特率可高达1Mbps,远距离可达10km;CAN总线通讯采用短帧结构,数据传输的时间短,受干扰的几率低;CAN总线协议有良好的检错措施,可靠性较高;CAN总线通讯对于传送帧可以设定不同的优先级,通过总线仲裁机制使高优先级的信息能够被优先及时传送,增加了CAN总线通讯的实时性;CAN总线的完善可靠的通信协议主要由接口器件完成,降低了软件开发的难度。此外,CAN总线网络中的每节点对应一个地址,理论上基于CAN总线的网络上可以添加删除任一节点,通讯方式可以为点对点的通讯也可以为广播方式,可以为单主方式也可以是多主方式,因此CAN总线通讯有相当的灵活性。
CAN总线开始主要应用于自动化电子领域的汽车发动机部件、传感器、抗滑系统等应用中,但随着CAN的应用普及,其应用范围已不局限于汽车行业,正在向过程控制、机械、纺织等行业发展,应用领域从高速网络到低成本的多线网络。而且CAN总线的实时性以及抗干扰能力强等优点也逐步为航天领域所认可。1995年SSTL(Surrey大学卫星技术公司)将CAN作为星载遥测/遥控信道,随之SSTL开发了基于CAN的分布式解决方案。至今SSTL已经在UoSAT-12,SNAP-1,AISAT-1,UKDMC,NigeriaSAT-1,BilSAT-1 等6颗LEO卫星中应用了CAN总线网络,用于实现星载计算机与其他任务节点之间的通信;ESA在SMART-1上也将CAN作为系统总线和有效载荷总线,实现数据交换和控制命令的传送。在国内,CAN总线技术在小卫星中也得到了实际的应用。
本文在分析CAN总线航天应用的基础上,从硬件原理设计、CPU与CAN总线接口实现以及CAN总线通信软件设计等方面进行了论述。

表1  CAN总线故障及其影响分析



2  CAN总线工作原理
CAN总线的多主站工作方式的发送原理采用“载波侦听多路访问/冲突检测”(CSMA/CD:Carrier Sense Multiple Access with Collision Detect)技术实现。利用CSMA访问总线,可对总线上信号进行检测,只有当总线处于空闲状态时,才允许发送。利用这种方法,可以允许多个节点挂接到同一网络上。当检测到一个冲突位时,所有节点重新回到‘监听’总线状态,直到该冲突时间过后,才开始发送。在总线超载的情况下,这种技术可能会造成发送信号经过许多延迟。为了避免发送延时,可利用CSMA/CD方式访问总线。当总线上有两个节点同时进行发送时,通过“无损的逐位仲裁”方法来使有高优先权的报文优先发送。在CAN总线上发送的每一条报文都具有唯一的一个11位或29位数ID。CAN总线状态取决于二进制数‘0’而不是‘1’,所以ID号越小,该报文拥有越高的优先权。
CAN总线的多主站工作方式的接收原理是通过验收滤波器来实现的。独立的CAN 控制器SJA1000设置了一个多功能的验收滤波器,该滤波器允许自动检查标识符和数据字节。使用验收滤波器的滤波方法可以防止对于某个节点无效的报文或报文组存储在接收缓冲器里,因此降低了主控制器的处理负荷。滤波器由验收码寄存器(ACC)和屏蔽寄存器(AMR)组成。在BasicCAN 模式里的验收滤波,其判据为:(ACC(7:0) ⊙ ID(10:3))+AMR(7:0)。如果判据的结果为“11111111”,则表示该帧数据是其他节点传送给本节点的数据,本节点CAN总线控制器将接收本帧数据,在CRC校验无误后于应答间隙产生应答信号。

3  CAN总线航天应用分析
ESA开展的CAN、1553B、SpaceWire技术研究表明以差分信号传输的高速串行总线用于星载设备之间的数据传输能保证通信的及时性, 利于降低星载设备的功耗,有助于获得低噪声、抗电磁干扰性强、EMI低、信号不受电源开关状态变化影响等优势, 具有良好的航天应用前景。
CAN总线作为一种专为汽车工业设计的现场总线,具有很多适合航天应用的特点:作为多主站方式的串行通讯总线,CAN总线具有低成本,高抗电磁干扰性,高总线利用率,很远的数据传输距离(长达10km),高速的数据传输速率(高达1Mbps),可根据报文的ID决定接收或屏蔽该报文,可靠的错误处理和检错机制,发送的信息遭到破坏后,可自动重发,节点在错误严重的情况下具有自动退出总线的功能等特点。
ISO11898建议的CAN总线的物理电气性能,能够保证在总线发生某些故障时不至于中断通信,而且可以为故障的定位提供可能。表1列出了CAN总线可能发生的各种开路和短路故障,以及在该故障模式下CAN总线受影响的情况。
CAN总线具有安全可信性。从协议分析,CAN总线的每个ECU具备错误检测、标定和自检的强有力措施。检测错误包括:发送自检、CRC校验、位填充和报文格式检验。其错误检测具有如下特性:其一, 所有全局错误都可以检测;其二,发送器的所有局部错误都可以被检测;其三,报文中5个以内的随机分布错误都可以被检测到;其四,报文中长度小于15的突发性错误都可以被检测得到;其五,报文中任何奇数个错误都可以被检测得到;其六,没有检测出的已损报文的剩余错误概率为报文出错率的4.7×10-11。
SSTL经过研究发现,在600公里~1000公里的空间领域,空间辐射对卫星的影响相对较小。在这个高度上,总剂量为每年1Krad左右(其量级相当于增加5mm的铝屏蔽层),SEU发生率相当于每天每Mbyte一次(此数据来源于试验观察),并且观测到的SEL发生概率非常低,在SSTL整个记录中只记录到3到4次值得怀疑的情况(确定的只有4次)。SSTL还发现几乎所有的商业CMOS器件,在经受10 Krad辐照后其性能并无明显下降。SSTL在低轨道小卫星采用工业级CAN控制器芯片构建卫星CAN总线网络的成功,验证了上述结论。表2为SSTL在近年来采用的COTS CAN器件。


表2     Surrey大学采用的COTS CAN器件统计列表



器  件 飞行任务次数
Philips CAN收发器:当前主流产品 4
Philips  PCA82C250      10
Philips P87C592      10
Philips CAN 8位外设:产权主流产品 4
Philips PCA82C200:CAN 8位外设 6
Infineon:8位CAN微控制器(A/D,PWM,例如8051)   6
Microchip CAN SPI外设 4


4  星载计算机中的双冗余容错CAN总线设计
图1描述了基于CAN的双冗余总线结构。基于CAN总线的双冗余系统通信总线的基本设计思想是在卫星各功能模块之间布下两条基于CAN的系统通信总线,即用两套CAN总线控制模块分别连接到总线BUS0和BUS1上。正常情况下优先在一条总线上通信,这条总线出现故障时通过另一条进行通信并重新初始化出错的总线以备将来再用。这样即使一条通信通道故障后不会影响整个系统的数据交换,大大提高了通信的可靠性。



图1     基于CAN的双冗余总线结构



图2     CAN总线硬件设计原理简图


图2为星载计算机中CAN总线硬件设计原理框图。 CAN总线协议控制芯片选用Philip的工业级器件SJA1000,收发器选用Philip的PCA82C250。CPU与SJA1000的接口控制逻辑通过Acbbb的反熔丝FPGA实现。SJA1000工作在Inbbb模式,工作时钟为7.3728MHz。复位信号通过MAX708产生。为了有更好的EMC/EMI性能和抑制比较器的噪声,VDD通过RC滤波器退耦。

[NextPage]
SJA1000的RX1信号处理非常关键。如果使用外部集成收发器电路而且没有在时钟分频寄存器里使能比较器旁路功能,RX1输出要被连接到2.5V的参考电压(82C250的Vref输出)。图3显示了CBP的两种设置所对应的电路。对于使用82C250集成的收发器电路,SJA1000的相关数据手册建议使用旁路功能,即CBP设置为1,在这种情况下,SJA1000的比较器旁路功能有效,减少了内部传播延迟,即td2<td1,提高了CAN总线的大长度,休眠模式的电流将显著降低。在CBP为1时,硬件设计必须保证RX1接地。



图3     SJA1000的接收输入比较器旁路设计

82C250的RS信号通过电阻Rext接地。RS管脚的电流决定了传输介质上传输信号的信号沿的陡峭程度,Rext阻值的大小必须根据CAN总线的工作速度及其工作环境进行设计和选择,具体可参见SJA1000的数据手册或者应用文档。

5  CPU与SJA1000的接口逻辑设计
星载计算机的CPU不同于8086,采用的是独立地址和数据总线。CAN总线控制器SJA1000采用地址/数据总线复用方式,需要将CPU的总线信号经过适当逻辑处理后才能够满足CAN总线控制器的时序要求。图4和图5是SJA1000在Inbbb模式下的读写时序。按照SJA1000的数据手册,确保SJA1000的读写正确,如下的时序参数必须满足:


[NextPage]


图4     SJA1000读时序(Inbbb模式)



图5     SJA1000写时序(Inbbb模式)
l tW(AL):必须保证ALE的时间,小不能小于8ns;
l tLLRL/tLLWL:读写时ALE无效到读写信号有效的时间,小不能小于10ns;
l tLCRL/tLCWL:片选信号有效后读写信号有效的时间,小不能小于0,即片选有效必须出现在读写信号有效前;
l tW(R):读信号有效宽度,小不能小于40ns;
l tW(R):写信号有效宽度,小不能小于20ns;
l tWHLH:写信号无效到下一次ALE有效的时间,小不能小于15ns;
l th(AL-A):在ALE为低电平后地址应该保持时间,小不能小于2ns。
CPU和CAN总线接口采用地址直接映射。接口时序设计重点是接口控制逻辑必须产生符合上述关键参数的读写时序。如果简单的按照ALE<=not nADS方法处理,不满足要求时序关系,这在调试过程中已经得到验证。为此,在设计中采用了FPGA技术,以求很好地解决CAN总线与CPU的接口问题。图6描述了通过VHDL编写实现接口电路的状态转移图和FPGA设计产生的读写CAN总线时序,其中时钟周期不低于67ns,该时序满足SJA1000要求。


[NextPage]


图6     CAN总线接口时序设计的状态转移和时序


6  CAN总线通讯软件的设计
双冗余总线结构的通讯软件主要由初始化、接收和发送三个模块组成,控制流图见图7。在程序设计时采用了SJA1000的Basic模式,初始化中需要对BUS0和BUS1分别进行初始化,包括SJA1000的控制寄存器、接收代码寄存器、接收屏蔽寄存器、总线时序寄存器等


展开全文