淮北西门子S7-300代理商
1、前言
我厂DU1909组合镗床是加工汽车汽缸体缸孔的主要设备,属80年代初期产品,巳使用十多年。该机床是依靠近23只中间继电器,17个液压电磁阀,5只接触器和约20个控制按钮、行程开关、压力继电器等电器,通过继电器的逻辑控制来完成机床的各种加工工序。在加工过程中,联动工作可靠性差,容易发生故障,且该机床在安装调试时,厂家己对该机床的电器控制线路进行过多次修改,以致现有的电器图纸与实物严重不符,从而增加了维修工作的难度和机床停机检修时的时间。
在这十多年的使用期间,我厂的电器维护人员在对该机床进行维护时,克服图纸与实物多处不符的困难,排除了许多故障,并积累了不少维修经验。但由于机床电器元件的逐步老化,以致产生了不少新的电器故障,靠以往的经验进行维修己逐显困难,造成机床停机检修时间的不断增长,严重影响加工工件的质量和生产任务的完成。针对以上的情况,我厂决定对该机床进行电器改造,以解决因动作不可靠、维护困难而影响生产的问题。
2、控制系统简介
该机床属早期的继电器逻辑控制系统,由于其动作速度慢、可靠性差、连线复杂、定时精度不够准确、可维护性差等原因,现在的继电器逻辑控制系统将逐渐被淘汰。PLC控制系统由于体积小、功耗低、速度快、可靠性高、故障率低、维护方便、又具有较大的灵活性和可扩展性等优点,因此被广泛地应用于各种工业领域。基于上述原因,根据机床工作的要求,我厂决定采用PLC控制系统取代原继电器逻辑控制系统,对该机床进行电器技术改造。
3、工艺要求
该机床是立式双轴三工位移动工作台精加工专用组合镗床,加工缸体是六缸孔缸体。现我厂又开发生产了四缸的发动机,而该机床在加工四缸缸体时,机械方面采用了两次装夹的办法进行整改,基本满足加工的工艺要求,但在电器方面,原系统则无法进行改变,不能进行自动加工,只能靠手动一步一步的执行动作,操作繁琐且效率极低。用PLC进行改造时,利用PLC在编程方面的优点,我们用一个转换开关可方便地实现六缸机与四缸机加工的自动转换。各工艺流程叙述如下:
3.1、六缸机加工流程
六缸机加工的工艺流程如图1所示:
在初始状态下,装上加工工件,按压A3按钮,开始插销和夹紧,然后拨动转换开关XA到六缸自动位置,自动循环加工开始运行。全部加工完成后工作台又回到Ⅰ工位位置,并松开和拔销,拨动XA到调整位置,卸下工件,一个循环过程结束。再装上另一工件,下一循环重新开始。图中的横向工进和横向快退分别对应于横向出刀和退刀。另外,有关加工工艺方面的延时要求,在图中并未画出,
在下面的图2中亦是如此,在此说明。
3.2、四缸机加工流程
四缸机加工的工艺流程如图2所示:
与加工六缸机不同的是,在插销夹紧后,转换开关要拨在四缸自动的位置,Ⅰ工位加工完后,工作台自动移到Ⅲ工位进行加工,Ⅱ工位不加工,Ⅲ工位加工完又回到Ⅰ工位,然后自动执行松开和拔销,拨动XA到调整位置后可移动加工工件,进行对加工工件的二次装夹,再次拨动XA到四缸自动位置,同在Ⅰ工位又加工工件的另外一个缸孔,加工完后不再移动工作台而自动执行松开和拔销,拨动XA到调整位置,卸下工件,一个循环过程结束。
3.3、调整要求
无论是加工六缸机还是加工四缸机,在PLC控制程序正在运行的加工过程中,只要将转换开关XA由自动方式拨回到调整方式,正在运行的程序应立即停止运行。
手动过程以及镗头对刀、工序调整等过程应在调整方式下进行。
4、PLC控制系统的组成
根据机床的工作原理,改造后的主要控制对象有:1台液压泵、2台进给主轴电机、14只电磁液压阀、3盏工作状态指示灯。主要控制元件有:11个控制按钮和转换开关、5个接触器和断路器的辅助接点、5个压力继电器和10个行程开关。
统计后得出该机床的输入点为28点,输出点为19点。我们选用OMRON(欧姆龙)C60P型可编程序控制器对该机床的电器控制系统进行改造,该型的PLC输入点为32点,输出点为28点,可满足该机床输入输出点数的要求。
改造后的PLC(OMRON C60P)外部I/O连接电气原理图如图3所示。
在图3中,连接输入点0000的油泵KM7触点,是使用常开触点,连接输入点0001的断路器QF5-QF7的触点,也使用串联连接的常开触点。如果都使用常闭触点如图4所示,在正常加工时,该触点全部是断开的,这时如果发生线路断路时,如在图中的a或b处断开,在该相应的输入点上却无法反映出来,程序照常运行。一旦真发生故障使图中的KM7等触点动作,由于线路断路,就无法起到故障保护的作用。
在指示灯方面,设立了一个四缸机加工过1次记忆指示灯HL3。根据四缸机加工工艺,工作台在Ⅰ工位要进行两次加工,以加工不同的缸孔。由于在加工过程中,可能会出现突然停电、人为停机和故障停机等现象,由此可能会引起操作者不知道Ⅰ工位是何种状态,即不知Ⅰ工位是否己经进行过一次加工,通过HL3指示灯可清楚的指示出Ⅰ工位的加工状态。另外,通过控制按钮A12可方便地转换Ⅰ工位的加工状态及其指示。
5、程序编制
该机床所要编制的控制系统控制程序,除插销夹紧和松开拔销外,主要动作为镗头加工和工作台移动两大部份。镗头加工主要为顺序控制,工作台移动由于所控制的对象不同,具有分散控制的特点。因此,如何编制出结构清晰、工作效率高白的PLC应用程序,我们对此进行了有益的尝试。
5.1、工作方式的转换
该机床要求既可加工六缸缸体,又可加工四缸缸体,故需三种工作方式,即六缸自动、调整、四缸自动。在编制程序时可用两种方法实现工作方式的转变。一种是采用跳转指令(即JMP、JME指令)来实现转变,这种方法的特点是各种工作方式分开编程,编制的程序清晰明了,运行时只执行相应工作方式的指令,此外的工作方式,其指令将不执行。这样,就相应缩短了程序的扫描时间,但却占用了较多的内存单元。
另一种方法是采用指令并联的方法来实现转变,本机床控制系统的控制程序采用此方法,如图5所示,此方法的特点是,编制的程序简单扼要,相对于上一方法而言,这种方法运行程序的扫描时间将有所增加,但却使用较少的内存单元.
5.3、工作台移动的程序编制
该机床工作台移动由于其控制条件和控制对象的分散特点,在编制程序时,可根据其逻辑特性进行编程,所编制的程序如图7所示。图中只画出六缸机程序部分,四缸机和调整部分可按类似的方法编制出其PLC程序图,这里不再介绍。
其控制原理简单介绍如下:工作台的移动是通过4个电磁阀的得电状态决定的,当9DT、11DT得电时,工作台由Ⅲ工位向Ⅰ工位移动;8DT、10DT得电,则是由Ⅱ工位向Ⅲ工位移动;8DT、11DT得电,由Ⅰ工位向Ⅱ工位移动。图7中0107为镗头原位信号,1004为镗头原位脉冲信号,1005为到达Ⅱ、Ⅲ工位脉冲信号,1006为到达Ⅰ工位脉冲信号,HR0、HR1、HR2分别为在Ⅰ、Ⅱ、Ⅲ工位信号,此为断电保持信号。假设在Ⅰ工位加工工件时,加工完成后镗头退回到原位,由于在Ⅰ工位时HR0为ON,则1004为ON使得0603为ON,进而0600亦为ON,电磁阀8DT、11DT得电,工作台由Ⅰ工位向Ⅱ工位移动。到达Ⅱ工位后,图7中1005常闭触点的瞬时断开使得电磁阀8DT、11DT失电,至此,工作台完成了向Ⅱ工位的移动过程。工作台向Ⅰ工位和Ⅲ工位的移动亦可据此方法分析。
5.4、Ⅰ工位加工状态记忆编制
所编制的Ⅰ工位加工状态的记忆程序如图8所示。
图中0011为四缸自动方式信号,0003为调整方式信号,1004·HR0为Ⅰ工位加工完成信号,0113为A12控制按钮,可转换Ⅰ工位的加工状态,CNT03计数器的功能是用来记忆四缸机在Ⅰ工位的加工状态,用以保证四缸机循环程序的顺序执行。
由图8可见,在四缸方式下Ⅰ工位加工完一次后,1000为ON,计数器CNT03的计数值置为1,待下一次在Ⅰ工位又加工完一次后,1000又一次ON,致使计数器CNT03复位成2的预置值,这样,通过比较计数器CNT03的计数值就可得出Ⅰ工位所处的加工状态,并由输出点0610输出到指示灯指示出来。
另外,在调整状态下,每按压按钮A12一次,CNT03的计数值就变化一次,相应地,0610的指示状态就翻转一次。
5.5、夹紧问题的解决
该机床要求只有在夹紧完好时,才能进行镗头加工和工作台的移动,该夹紧信号0014的产生是通过压力继电器的动作而形成的,在运行调试时发现,压力继电器动作的可靠性较差,造成输入点0014信号经常瞬时失电,致使运行中的程序经常产生破坏性的误动作。解决此问题可用自锁的方法,即将0014夹紧信号的整个夹紧过程自锁,如图9所示,由1012信号作为镗头加工和工作台移动的夹紧信号满足条件,从而在电气上解决了压力继电器动作不可靠的问题。
6、结论及使用效果
通过这次改造,我们觉得用PLC控制器对设备进行电气改造,非常方便实用,并且容易修改。一般在电气方面进行设计时,难免会出现和机械方面相矛盾的地方。如果电气控制箱一旦完成,其修改就相当困难,但是PLC却不同,它可对其控制程序随时修改,而不必进行电气线路的改动。因此在对一些老的机床设备进行电气改造时,可先进行系统和输入输出点的设计,然后进行电控箱及外围电器元器件的安装,在安装过程中再进行PLC控制程序的程序编制,从而缩短了施工周期。实践证明,对于一些电气可靠性差的机床设备用PLC进行彻底改造,是保证机床可靠运行的有效办法,只要处理得好,就会取到事半功倍的效果。
该机床自1997年9月改造完成后,到现在已连续运行使用了将近一年,电气系统从未发生故障,可靠性相当高,彻底解决了改造前由于继电器控制可靠性差,元器件老化等原因带来的经常性故障及废品率高的问题,使该机床的加工能力得到了充分的发挥
1、引言
由我院技术总承包、近期已顺利投产的张家港华达涂层有限公司年产15万热镀锌板工程和我院目前为济南钢铁公司技术总承包的年产20万吨热镀锌板工程,采用新型自动化系统配置模式,从根本上改进和简化了自动化系统,目前张家港项目运行良好,济钢项目进展顺利。
2、系统配置原则和方式
冷带连续加工机组的过程控制系统一般按照工艺特点可以进行比较详细的分类,如焊机控制、锌锅控制、加热炉控制、辊涂控制、光整机控制等,但一般而言,冷带连续加工机组(镀锌机组、彩色涂层机组还是退火机组等)其通用的过程控制系统均为传动控制系统和与它关系密切的PLC系统再加上上位监控系统;20世纪80年代,宝钢2030冷轧厂08镀锌机组(1850mm、年产30万吨)的自动化系统根据当时自动化技术水平按照工艺区段方式共配置5台西门子公司的S5-150KPLC和一台上位工业控制机300-R30,属当时国际先进水平,目前自动化技术与20世纪80年代相比,进步极大,沿袭2030冷轧厂带钢生产机组工艺分段配置自动化系统的传统模式已不适应目前的自动化技术水平,表1为S7-400系列PLC、S7-300系列PLC与S5-150K系列PLC的技术性能对比;以表1技术性能对比为依据,通过分析,济南钢铁公司20万吨镀锌机组集成的自动化系统我们采用一块S7-400主CPU:CPU416-2DP;张家港机组(年产15万吨)采用一块S7-300主CPU:S7-315-2DP,实践证明,我们的系统配置模式完全满足生产要求;可以有以下结论:目前国内大型钢铁企业年产在20万吨左右的冷带连续加工机组自动化系统,只需1台S7-400主CPU就可以满足生产要求,对于年产在15万吨以下的中小机组只需要一台S7-300主CPU:CPU315-2DP就完全可以满足生产要求,这无疑极大地简化了冷带加工机组的自动化系统,使广大用户从中受益。
采用新型方式配置冷带连续加工机组自动化系统的好处可以归纳如下:
(1)充分发挥CPU技术性能,淘汰按照工艺区段分配PLC的老模式,从根本上简化自动化系统结构,降低设备投资。
(2)充分采用现场通讯总线技术和远程I/O单元,从而大量节省输入/输出点和施工电缆,降低投资费用。
(3)充分采用现代HMI技术,省却大量操作按钮、指示灯和显示仪表,从而提高自动化生产的操作和管理水平,使操作更加人性化和简约化。
3、系统组成及功能
冷带连续加工机组自动化系统构成方式为:基础传动+PLC+上位监控;PLC(主CPU、远程I/O站)、HMI、传动系统之间通过PROFIBUS-DP网络进行信息交换,具体结构见图1。
3.1上位机监控系统组成及功能
监控系统通过PROFIBUS-DP总线与PLC主CPU连接,接受和采集原料、生产过程、产品有关信息,实现生产管理人员-设备-原料-产品之间的信息交换,对机组的正常生产和产品进行自动化管理;通过网络,把工艺参数设定值和对电气设备的操作从人-机界面接口传送到PLC,把机组的状态、电气参数及故障由PLC收集送到人-机接口的CRT显示器上;我院目前为济南钢铁公司技术总承包的20万吨热镀锌板工程上位监控系统采用WinCC组态技术对整个机组运行状态进行监控,系统配置见表2。
上位监控系统软件功能如下:
(1)原料数据(板材宽度、厚度、钢卷编号等),过程数据(机组各段张力、机组速度),产品数据(钢卷卷号、卷重、卷径、焊缝位置等)的自动生成、存储和修改,将自动生成的配方工艺参数下载到PLC。
(2)所有生产技术数据的汇总、存储、打印;
(3)各主要工艺设备状态显示;(4)在人-机界面上或者在操作台上对上述生产技术数据进行人工干预;
(4)加热炉的温度显示、运行状态监视、故障报警;
图2为采用WinCC软件组态的济钢20万吨热镀锌机组主画面。
3.2PLC系统组成及功能
以济南20万吨热镀锌项目为例,PLC系统采用西门子公司S7-400系列PLC,主CPU采用S7-416-2DP,远程I/O采用ET200,由CPU、存储单元、电源模板、通讯模板、输入/输出模板、高速计数模板、中继器等组成,PLC与分布式I/O及传动系统采用Profibus-DP网。具体配置见表3。
PLC控制系统主要完成加工线工艺功能的控制,根据工艺需要完成区段速度设定、张力设定、活套控制、逻辑控制、监测和报警、与上位机进行通讯等控制功能;在三个操作台(入口操作台、工艺操作台、出口操作台)上分别设有模块化I/O单元,由通讯电缆汇总到PLC系统,为提高系统可靠性,PLC与各自的远程I/O站之间的通讯、PLC与调速传动装置之间采用独立通讯网络,PLC把设定参数和控制指令传送到终端和各调速传动系统,并收集各调速传动系统的状态和电气参数送到人-机接口的CRT上显示。
4、PLC软件功能
冷带连续加工机组的PLC软件主要是焊缝跟踪任务,包括自动刹车、慢速定位和紧急刹车;焊缝跟踪任务是靠现场远程I/O站信号通过ProfiBUS-DP与S7-400主CPU通讯,依据编制好的过程控制软件完成,它的任务主要包括:
(1)根据带钢焊缝在机组的位置实现机组的自动刹车
a)开卷机的自动甩尾刹车。
b)入口活套/出口活套的自动刹车。
c)卷取机的自动刹车。
d)拉矫机的辊道自动开/闭。
(2)根据焊缝位置实现机组的慢速定位
a)入口上/下通道带头在焊机处的慢速定位。
b)入口上/下通道在助卷器和夹送辊两种方式下的穿带。
c)入口/出口侧剪刀处的带钢定位。
d)焊缝的自动打孔。
e)根据焊缝位置计算带长。
(3)机组的紧急刹车
a)传动设备故障的机组紧急刹车。
b)断带故障的紧急刹车。
(4)4个程序模块
上述所有工艺要求的控制功能其软件核心为4个程序模块,根据需要分别在自动刹车、慢速定位和紧急刹车过程中调用,它们是:
a)状态控制模块MDCT01。
b)张力调节模块TEAD01。
c)定位模块POSI01。
d)自动刹车模块AUBK01。
定位模块POSI01、自动刹车模块AUBK01的功能主要是接受来自现场状态控制点的状态,并且根据状态控制点状态去触发或者调用状态控制模块MDCT01和张力调节模块TEAD01的不同设定值程序,它们附属于张力调节模块和状态控制模块,主要是开关顺序连锁和通/断关系;状态控制模块MDCT01和张力调节模TEAD01的主要功能是速度-张力的设定,其具体内容见表4。
状态控制模块MDCT01和张力调节模块TEAD01按照机组工作状态的不同可以分为目标速度非“0”状态的生产请求和目标速度为“0”生产请求两种基本情况;
(5)目标速度非“0”状态的生产请求,可以分为两种情况:
a)初始速度为“0”,既生产线为停止状态,这种情况下,首先要进入张力准备阶段,根据工艺要求进行张力预选,接通张力,建立静态张力,其次是张力调节阶段,建立该运行区所有设备的工作张力,并且对张力的建立和调节进行确认和检查,在确认和检查无误的情况下,进入速度调节阶段,经过一定时间Δt(如出口段为4秒、工艺段为3秒、出口段为6秒)检查速度不为“0”,说明请求实现,具体张力-速度请求-确认曲线模型如图3所示。
b)初始速度不为“0”,既生产线为正常生产状态,这种情况下,所有张力均已存在,各段张力均为正常生产值,此时,可以直接进行速度调节,具体张力-速度曲线模型如图4所示。
目标速度为“0”,这种请求是实现目标速度为“0”的状态,具体张力-速度曲线模型如图5所示。
由图4可以知道,当速度为“0”后大约0.7秒,取消工作张力,建立静态张力,若没有外部中断请求,那么在大约900s之后,系统自动取消静态张力,张力值“0”。
图6表示镀锌机组入口段软件功能框图,整个框图基本包括状态控制模块MDCT01、张力调节模块TEAD01、定位模块POSI01和自动刹车模块AUBK01。
冷带连续加工机组的PLC控制程序编制,应该注意以下情况:
a)现场执行元件的可靠性直接关系到自动化系统的稳定运行,传动电机、抱闸和限位开关、光电检测在自动化系统中具有同样的重要性,机组的连续性生产和限位开关这样小的元件密切相关。
b)冷带连续加工线自动化系统控制的主要设备是辊系设备,主要参数是张力-加速度-速度-位置这样四个力学参数,其控制过程属于刚性物料输送过程,其前后联系非常紧密,单体设备之间相关性极大,在控制精度上有一定要求,否则会出现断带、拉带、堆带或者机组振荡故障现象。
c)冷带连续加工线自动化系统的硬件结构应合理采用远程I/O和总线通讯方式,软件结构上应该按照程序模块把所有开关量信号与张力-加速度-速度-位置参数有机地整合在一起,否则,机组静态张力、穿带张力、工作张力、入口/出口活套充/放套等工作状态很可能会出现意想不到的故障。
5、结束语
目前,由我院承担的我国国内所有冷带连续加工机组的自动化系统运行均非常稳定、可靠,这和我们多年吸收、借鉴我国花巨资从国外引进的同类机组自动化技术、不断跟踪自动化技术发展趋势是分不开的,我们的工作为我院和广大用户创造了良好的经济效益和社会效益
- 马鞍山西门子S7-300代理商 2024-05-08
- 淮南西门子S7-300代理商 2024-05-08
- 蚌埠西门子S7-300代理商 2024-05-08
- 芜湖西门子S7-300代理商 2024-05-08
- 合肥西门子S7-300代理商 2024-05-08
- 安徽西门子S7-300代理商 2024-05-08
- 丽水西门子S7-300代理商 2024-05-08
- 台州西门子S7-300代理商 2024-05-08
- 舟山西门子S7-300代理商 2024-05-08
- 衢州西门子S7-300代理商 2024-05-08