浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
朝阳西门子S7-300代理商

朝阳西门子S7-300代理商

本文以EMS(EscortMemorySystems)的RFID射频识别读写器LRP830为例,分别介绍了可编程控制器及微机与RFID射频识别读写器进行串行通讯,从而读取标识数据的具体实现方法:PLC通过串行I/O通讯协议与RFID读写器实现串行通讯,PC通过bbbbbbs多线程技术与RFID读写器实现串行通讯。文中给出了实例。RFID射频识别在我国的应用才刚刚开始,前景非常广阔。本文所述方法具有一定代表性,对于推动RFID射频识别技术在工业自动化等领域的应用,具有一定的积极意义。

    RFID射频识别系统简介

    RFID的全称是RadioFrequencyIdentification,即射频识别,它利用无线电射频实现可编程控制器(PLC)或微机(PC)与标识间的数据传输,从而实现非接触式目标识别与跟踪。

    一个典型的RFID射频识别系统包括四部分:标识、天线、控制器和主机(PLC或PC),系统结构图见图1。

060509a

    图1RFID射频识别系统结构图

    标识一般固定在跟踪识别对象上,如托盘、货架、小车、集装箱,在标识中可以存储一定字节的数据,用于记录识别对象的重要信息。当标识随识别对象移动时,标识就成为一个移动的数据载体。以RFID在计算机组装线上的应用为例,标识中可以记录机箱的类型(立式还是卧式)、所需配件及型号(主板、硬盘、CD-ROM等)、需要完成的工序等。又如在邮包的自动分拣和跟踪应用中,可以在标识中存储邮包的始发地、目的地、路由等信息。

    天线的作用是通过无线电磁波从标识中读数据或写数据到标识中。天线形状大小各异,大的可以做成货仓出口的门或通道,小的可以小到1mm。

    控制器用于控制天线与PLC或PC间的数据通信,有的控制器还带有数字量输入输出,可以直接用于控制。控制器与天线合称读写器。

    PLC或PC根据读写器捕捉到的标识中的数据完成相应的过程控制,或进行数据分析、显示和存储。

    本文即以具有代表性的美国EMS(EscortMemorySystems)公司的13.56MHz无源RFID射频识别读写器LRP830为例,介绍了PLC及PC与RFID读写器进行串行通讯,从而获取标识数据,用于控制或数据处理的具体实现方法。

    RFID射频识别读写器的命令集及串行通讯协议

    以LRP830读写器为例,LRP830是EMS13.56MHz无源系列射频读写器中的一种,它的标识和天线可以在水下或高温腐蚀环境中正常工作,可以一次读写99个标识,大读写距离63.5cm。它带有两个串口,一个DeviceNet接口,4个DI隔离输入,4个DI隔离输出,保护等级IP66,NEMA4封装,非常适合于在工业自动化中应用。

    LRP830读写器上的串口是合在一起的,通过专用电缆可以分接出COM1和COM2两个串口,两个串口作用不同,COM1用作通讯口,从PLC或PC接收命令并返回响应数据,可以配置为RS232、RS422或DeviceNet接口。COM2用于配置系统参数(如读写模式、波特率等)或下载系统升级程序。

    LRP830可以与所有EMS的FastTrackTM系列无源标识结合使用,每个标识中可以存储48个字节的数据,另外还有8个字节用于存储只读的唯一的序列号(出厂前由厂方设定)。

    LRP830提供了单标识读写命令集(见表1),多标识读写命令与此类似。

    表1单标识命令集

060509b

    每种命令可以有三种通讯协议:ABxS、ABxF、ABxASCII。表2是ABxS通讯协议持续读单标识命令的一个例子,其它命令与此类似。

    表2ABxS协议持续读单标识命令举例

060509c

    RFID读写器与PLC串行通讯

    以EMSRFID读写器LRP830与GEFanucVersaMaxPLC的串行通讯为例。VersaMaxPLC的RS232串口与LRP830的COM1接线对应关系见表3。

    表3VersaMax与LRP830读写器的串口接线对应关系

060509d    

    通过PLC控制RFID读写器读写标识数据的实现流程如图2所示。

060509e

    图2PLC读写RFID标识数据的程序结构框图

    以下是具体实现时要注意的技术细节:

    1)LRP830与VersaMaxPLC的串口相连时,信号线要错线,即VersaMaxRS232口的TXD/RXD要接LRP830的COM1的RXD/TXD,LRP830与PC连接时则是直通的。

    2)PLC使用串行I/O通讯协议与RFID读写器通讯。串口初始化、设置缓冲区、清除缓冲区、写串口、读串口状态等操作都是先通过一组BLKMOVWORD指令给COMMREQ的数据块赋值,然后执行COMMREQ指令完成的。例如,以下语句(见图3)通过RFID读写器写10个FF(46H)到标识中,从个字节写起。

060509f

    图3PLC与RFID读写器串行通讯例程

    3)要注意PLC写标识数据只需要执行写串口命令就可以了,而PLC读标识数据的过程则包含两步:一是PLC执行写串口命令,即写读标识命令到RFID读写器;二是PLC执行读串口命令,捕捉RFID读写器返回的数据。这是由于RFID读写器在接到读标识命令后,会返回读命令的响应信息到串口缓冲区,其中包含了读到的标识数据。

    4)使用ABxS协议时,要注意命令字的MSB和LSB的顺序问题。RFID读写器与PLC通讯时,要将读写器指令的MSB和LSB颠倒一下,即LSB在前,MSB在后。例如图3中,第二个BLKMOVWORD指令的第三个输入IN3应为16#4AA,而非16#AA04。

    5)利用读写器指示灯的变化辅助PLC程序调试。LRP830读写器的面板上有两排LED指示灯,其中,当“ANT”亮时,表示天线在执行读写操作;“COM1”亮时,表示串口1执行了写命令,“RF”亮时,表示有标识被读写且仍在读写范围内。

 RFID读写器与PC串行通讯

    仍以EMSRFID读写器LRP830为例。与PC机相连时,LRP830的COM1/COM2与PC机的9针串口

    COM1/COM2的连接对应关系见表4。

060509g

    表4LRP830的串口与PC串口连接对应关系

    在PC机上开发串口通讯程序,可以使用现有的通讯控件(如VB的Mscomm),也可以使用编程语言结合bbbbbbsAPI实现。本文用Delphi6在bbbbbbs2000环境中,应用多线程技术实现了PC与RFID读写器间的串行通信。使用Delphi的优点是,Delphi对许多bbbbbbs底层API函数作了封装,简化了程序代码。使用多线程的优点是,程序编写比较灵活,而且串口监听线程不影响主线程其它任务的执行。程序结构框图见图4。     

060509h


    图4PC与RFID读写器串行通信程序框图


    在具体实现上述思路时,要注意以下技术细节:

    1)根据RFID读写器通讯协议的特点,读写器每执行一个主机发来的指令,无论是读标识还是写标识,都会返回一定字节的响应数据,用以确认命令已执行或返回标识中存储的数据。因此,主机读或写标识数据都需要先写(串口命令)后读(返回的串口数据)。

    2)为了使程序体现模块化的设计思想,易于调试和维护,可以把各种RFID命令预先存入命令数组中,而把主机对RFID串口的命令和捕捉RFID读写器命令响应编制成单独的子程序,在调用它之前,先调用命令字赋值子程序。

    3)对主线程的说明:在主线程中用CreateFile函数建立串口事件,设置缓冲区和通信参数,创建串口监听线程。用WriteFile写串口函数完成通过RFID读写器写数据到标识中。部分程序如下:

    hcom:=CreateFile(pchar(Whichcom),GENERIC_WRITEOrGENERIC_READ,

    0,0,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,0);//产生串口事件

    setupcomm(hcom,TOTALBYTES,TOTALBYTES);//设置缓冲区

    getcommstate(hcom,lpdcb);

    lpdcb.BaudRate:=BAUDRATE;//波特率

    lpdcb.StopBits:=STOPBIT;//停止位

    lpdcb.ByteSize:=BYTESIZE;//每字节有几位

    lpdcb.Parity:=PARITY;//奇偶校验

    setcommstate(hcom,lpdcb);//设置串口

    Mycomm:=Tcomm2.Create(False);//创建串口监听线程

    WriteFile(hcom,WriteBuffer,sizeof(WriteBuffer),lpBytesSent,0);//写标识命令

    ……

    4)对串口监听线程的说明:

    程序中用到的方法主要有Synchronize和Terminate。Synchronize是Delphi提供的一种安全调用线程的方法,它把线程的调用权交给了主线程,从而避免了线程间的冲突,这是一种简单的线程间同步的方法,可以省去用其它语言编程时需要调用的多个bbbbbbsAPI函数,例如createEvent(创建同步事件),Waitforsinglebbbbbb(等待同步事件置位),resetevent(同步事件复位),PostMessage(向主线程发送消息)等。用Delphi编写多线程通讯程序的优点是显而易见的。例如以下语句即可实现串口监听线程:

    While(notTerminated)do//如果终止属性不为真

    Begin

    dwEvtMask:=0;

    Wait:=WaitCommEvent(hcom,dwevtmask,lpol);//等待串口事件

    ifWaitThen

    begin

    Synchronize(DataProcessing);//同步串口事件

    end;

    end;

    上述程序一旦检测到串口事件,就调用DataProcessing方法读串口数据,并写入数组,供程序其它部分调用,另外还要检测何时退出线程,程序如下:

    procedureTmainbbbb.DataProcessing

    begin

    bbbbb:=bbbbbCOMMERROR(hcom,lperrors,@comms);//清除串口错误

    ifbbbbbThen

    Begin//处理接收数据

    ReadFile(hcom,ReadBuffer,Comms.cbInQue,LPReadNumber,0);

    ReceBytes[I+ArrayOffset]:=ReadBuffer[I];

    //读串口缓冲区数据并写入数组

    gameover:=(ReceBytes[I+ArrayOffset-1]=Byte($FF))

    and(ReceBytes[I+ArrayOffset]=Byte($FF));//终止条件

    ifgameoverthenterminate;//退出线程

    ……

    End;

    End;

    其中,Terminate将线程的Terminated属性设置为True。线程一旦检测到Terminated属性为True,就会结束线程,去执行Onterminate事件,在Onterminate事件中对采集到的RFID标识数据进行处理。由于RFID读写器的ABxS协议的命令响应的后两个字节都是FF,所以可以将收到连续的两个FF作为终止线程的条件之一。

    程序应用举例:

    以持续读标识中所有48字节数据命令为例,在程序中用WriteBuffer数组保存该命令,对WriteBuffer数组的各个元素赋值如下:

    WriteBuffer[0]:=Byte($AA);WriteBuffer[1]:=Byte($0D);//连续读标识命令字头

    WriteBuffer[2]:=Byte($00);WriteBuffer[3]:=Byte($00);//从个字节开始读

    WriteBuffer[4]:=Byte($00);WriteBuffer[5]:=Byte($30);//读48个字节数据

    WriteBuffer[6]:=Byte($00);WriteBuffer[7]:=Byte($02);//延时2秒

    WriteBuffer[8]:=Byte($ff);WriteBuffer[9]:=Byte($ff);//连续读标识命令字

    执行持续读标识命令后,程序以WriteBuffer数组写串口,RFID读写器执行此命令,并返回响应数据。

060509i


    图5持续读标识命令执行结果


    从图5窗口中可以看到,前4个字节AAODFFFF就是LRP830读写器对持续读命令的确认信息,然后是数据报文头AAOD和标识中48个字节的数据(每字节数据前加00),后是数据报文尾FFFF。

    结束语

    本文介绍了可编程控制器及微机与RFID射频识别读写器进行串行通讯,从而获取标识中的数据的具体实现方法:PLC通过串行I/O通讯协议与RFID读写器实现串行通讯,PC通过bbbbbbs多线程技术与RFID读写器实现串行通讯。本文所述方法具有通用性,对于其它厂家的PLC和RFID系统也有一定的参考价值。RFID射频识别技术在我国工业自动化等领域的应用才刚刚开始,前景非常广阔。本文对于促进该技术的推广应用具有一定的积极意义。

一、前言

  中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。由于中央空调系统都是按大负载并增加一定余量设计,而实际上在一年中,满负载下运行多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。

  随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出liuliang,达到节能目的提供了可靠的技术条件。

二、问题的提出

  1、原系统简介

  我酒店的中央空调系统的主要设备和控制方式:100冷吨冷气主机2台,型号为三洋溴化锂蒸汽机组,平时一备一用,高峰时两台并联运行;冷却水泵2台,扬程28米,配用功率45 KW,冷水泵有3台,由于经过几次调整,型号较乱,一台为扬程32米,配用功率37KW, 一台为扬程32米,配用功率55KW, 一台为扬程50米,配用功率45KW。冷却塔6台,风扇电机5.5KW,并联运行。

  2、原系统的运行及存在问题

  我酒店是一间三星级酒店。因酒店是一个比较特殊的场所,对客人的舒适度要求比较高,且酒店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。

  由于中央空调系统设计时必须按天气热、负荷大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大liuliang、小温差的状态下运行,造成了能量的极大浪费。

  为了解决以上问题,我们打算利用变频器、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵、冷却塔进行改造,以节约电能。

三、节能改造的可行性分析

   改造方案是通过变频器、PLC、数模转换模块、温度模块和温度传感器等构成温差闭环自动控制,根据负载轻重自动调整水泵的运行频率,同时根据冷却水温度的高低,自动切投冷却塔散热风机,以达到节能效果。以下是分析过程:

  1、  中央空调系统简介



中央空调系统结构图

  在中央空调系统设计中,冷冻泵、冷却泵的装机容量是取系统大负荷再增加10%—20%余量作为设计系数。根据计算中央空调系统中,冷冻水、冷却水循环用电约占夏季酒店总用电的25%—30%,冷却塔的用电占8%—10%。因此,实施对冷冻水和冷却水循环系统以及冷却塔的能量自动控制是中央空调系统节能改造及自动控制的重要组成部分。

  2、泵的转速调节

  根据异步电动机原理

         n=60f/p(1-s)            

式中:n:转速     f:频率    p:电机磁极对数      s:转差率

由上式可见,调节转速有3种方法,改变频率、改变电机磁极对数、改变转差率。在以上调速方法中,变频调速性能好,调速范围大,静态稳定性好,运行效率高。因此改变频率而改变转速的方法方便有效。

  3、冷却塔的控制

    以前的冷却塔是人为的根据冷却水温度选择冷却塔开启的台数,非常容易造成能源的浪费现象,现在根据冷却水的温度,由温度传感器传送信号至PLC,由PLC经计算后对冷却塔风机依次开启,以28℃为基数,温度每上升2℃,开启两台散热风机,每下降2℃,延时5分钟后停止2台风机,以达到节能效果。

四、节能改造的具体方案

  1、主电路的控制设计

  根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,使用一台变频器控制拖动两台水泵交替运行。将一台扬程较高的冷水泵作为备用。

以下为冷冻水泵与冷却水泵一次接线图:

  2、功能控制方式

工作流程:

  开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作liuliang,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。

  停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十分钟后自动关闭。

  保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。

五、变频节能技术框图及改造原理分析

下图为变频节能系统示意图

 1、对冷冻泵进行变频改造


  控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的频率,以控制电机转速,调节出水的liuliang,控制热交换的速度;温差大,说明室内温度高系统负荷大,应tigao冷冻泵的转速,加快冷冻水的循环速度和liuliang,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和liuliang,减缓热交换的速度以节约电能;

  2、对冷却泵进行变频改造

  由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应tigao冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。

六、实际调试注意事项

  1、整改设备安装完毕后,先将编好的程序写入PLC,设定变频器参数,检查电器部分并逐级通电调试。

  2、投入试运行时,人为地减少负荷,观察liuliang是否因频率的降低而减小,并找到制冷机报警时的低变频器频率,以及liuliang降低后管道末端的循环情况,使变频器工作在一个低的稳定工作点。

  3、用温度计及时检测各点温度,以便检验温度传感器的jingque度及校验各工况状态。

七、技术改造后的运行效果比较

  1、节能效果及投资回报

  进行技术改造后,系统的实际节电率与负荷状态、天气温度变化等因素有一定关系。根据以往运行参数的统计与改造后的节能预测,平均节能应在20-30%以上。经济效益十分显著。改造后投入运行一年即可收回成本,以后每年可为酒店节约用电约12万元。

  2、对系统的正面影响

  由于冷冻泵、冷却泵采用了变频器软启停,消除了原来启动时大电流对电网的冲击,用电环境得到了改善;消除了启停水泵产生的水锤现象对管道、阀门、压力表等的损害;消除了原来直接启停水泵造成的机械冲击,电机及水泵的轴承、轴封等机械磨擦大大减少,机械部件的使用寿命得到延长 ;由于水泵大多数时间运行在额定转速以下,电机的噪声、温升及震动都大大减少,电气故障也比原来降低,电机使用寿命也相应延长。

    由于采用了温差闭环变频调速,tigao了冷冻机组的工作效率,tigao了自动化水平。减少了人为因数的影响,大大优化了系统的运行环境、运行质量。

八、结论

  虽然一次性投资较大,但从长远的经济利益来看是值得的。这里我们也借鉴了其它一些酒店改造的经验和实际效果,进一步验正了利用变频器、PLC、数模转换模块、温度模块、温度传感器等组成的温差闭环自动控制系统,对中央空调系统的节能改造是可行的。可以达到我们当初设计的预期效果。

九、结束语

  在科技日新月异的,积极推广高新技术的应用,使其转化为生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以tigao生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义


发布时间:2024-05-08
展开全文
优质商家推荐 拨打电话