定西西门子S7-200代理商
引 言
经济的高速发展,工业技术的不断革新和人民生活水平的不断tigao,促进了电力系统的逐步改造,并要求我国电网不断tigao其供电可靠率。从1998年至今,城乡电网供电可靠从99.81%tigao到99.897%。如今,配电设备市场的发展趋势应是:反应真实快速,高智能化和数字化。
地铁是地下铁道的简称,作为一种独立的有轨交通系统,它不受地面道路情况的影响,能够按照设计能力运行,从而快速、安全、舒适地运送乘客。地铁效率高,无污染,能够实现大运量地要求,具有良好的社会效益,成为现在中大城市改善交通情况的。配电的可靠性要求在地铁行业尤其突出。一旦停电,地铁无法安全运行,将导致城市交通的瘫痪。
为了保证运行的可靠性和避免人为的失误,地铁中采用了各种以电子计算机处理技术为核心的各种自动化设备代替人工的、机械的、电气的行车组织、设备运行和系统。同时为了保障地铁运行的安全性,地铁建设中经常采用SCADA系统作为综合数据采集与监控控制系统,对主变电所、牵引变电所、降压变电所设备系统的遥控、遥信和遥测,实时掌握配电所所有设备的带电情况。
1 地铁低压配电典型系统构成
地铁的低压配电通常采用典型的双进线一联络结构,如图1所示,其中1QF、2QF为进线开关,3QF为联络开关。正常工作的情况下,进线开关1QF和2QF合闸,分别为I段和II段母线供电。但是当其中一组进线电压跌落时(以1TF电压跌落为例),需要断开1QF。在甩开母线上的三级负荷后,闭合联络开关3QF,此时变压器2TF同时为I、II段母线供电。
图1 低压配电系统图
2 地铁行业低压配电备自投的特点
为了减少母线段断电时间,保证低压电气设备能够顺利运行,减少经济损失,地铁的低压配电系统要求备自投功能。所谓备自投,就是当进线开关因为电压跌落脱扣时,联络开关自动闭合。
但在地铁行业,备自投需要完成三个基本步骤:一,进线开关必须要脱扣,而且是因为电压跌落而非因为故障脱扣;二,三级负荷必须甩开;三,联络开关自动闭合。根据复位方式的不同,备自投又分为两种:自投自复和自投手复。自投自复:当进线掉电时,联络开关自动闭合,当进线电压恢复时,联络开关自动断开,进线开关自动闭合。自投手复:顾名思义,则当进线电压恢复时,手动分断母联闭合进线。
3 PLC备自投的应用与特点
以往的地铁项目,是通过电压继电器,时间继电器和中间继电器等继电器来实现备自投。当电压继电器探测到进线开关的进线侧电压低于低电压阀值,一般的判断条件为70%额定电压,经过时间继电器的延时,发出命令,令该进线开关脱扣,将信号发送至各三级负荷总开关和联络开关。之所以需要延时,是为了保证电网确实掉电,而不是发生晃电。三级负荷总开关收到进线的脱扣信号,并确认进线并非因为故障脱扣后,直接跳闸,并将跳闸信号发送至联络开关。联络开关接收到进线和各三级负荷总开关的脱扣信号后,自动合闸,完成一次备自投的过程。
可见,由继电器搭接而成的备自投回路能够满足基本的备自投要求,但是随着地铁行业对可靠配电的要求越来越高,而且在实际应用中,该备自投的继电器触点容易熔焊,线路复杂等问题,深深影响到地铁行业低压配电的安全稳定运行。因此近年来的地铁项目,基本都要求选用可靠性高的工业型PLC控制或智能模块来实现低压配电系统的备自投。如广州地铁项目就选用了ABB公司的AC31系列PLC来实现两进线一母联的备自投。其拓扑图如下:
图2 PLC硬件拓扑图
其中CPU 07KR51装于母联柜,4台扩展模块ICM14F1分别装于两个进线柜和两个三级负荷总开关回路。CPU 07KR51与扩展模块 ICM14F1之间通过CS31总线连接。进线回路把进线断路器状态、故障信号、低电压信号同时输入扩展模块 ICM14F1;三级负荷总开关回路将开关状态、故障信号输入扩展模块 ICM14F1;母联回路向CPU 07KR51输入母联断路器状态、故障信号和控制方式(自复或者手复)。PLC的输出线圈依次控制进线、母联和三级负荷回路开关的合分。PLC根据每个输入信号的状态,判断是否发生低电压,并判断输出继电器是否需要动作,实现两进线一联络系统的备自投切换。下表为PLC进行备自投的程序进程顺序:
进程1 | 进程2 | 进线3 | 进线4 |
判断进线是否失压 | 如果失压,则脱扣相关进线开关 | 分闸三级负荷总开关 | 确认进线和三级负荷总开关分闸后,闭合母联开关 |
表1 程序进程顺序
对比上面两种备自投控制的方案,可以得出PLC进行备自投控制的优点:
1) 可靠性
继电器容易烧坏,触点发生熔焊,线路复杂。每多连接一根电缆,发生故障的概率就增加一分。而且由于机械原因,不论在线圈吸合还是脱扣,都是依靠纯粹的机械判断,存在出错的可能,从而影响到整个系统的正常运行;PLC减少了继电器的数目,用内部虚拟继电器代替实际的继电器,同时通过输入信号,直接判断是否起动备自投,减少了中间的步骤,同时能jingque地给出延时时间,降低了出错地可能。经过多次的实践应用,表明PLC比继电器可靠得多。
2) 灵活性
当系统的控制逻辑发生变化时,PLC仅仅需要更改内部的程序内容,而继电器的备自投,需要重新设计,重新拆线接线,操作繁冗。更改完后,PLC可以事先在内部测试程序的准确性;而继电器的备自投则需要通电试验,如果发现问题,还需要再次拆线接线。
3) 简洁性
继电器的备自投,由于柜间的联锁和使用的继电器数量,需要连接的电缆数远远高于PLC。无论查线或者理解图纸来说,都比较复杂。PLC的备自投,只需要将所有信号输入PLC,通过程序判断,图纸简单易读。程序里可以按照每个回路的合分逻辑编程,并在后面加以备注,方便理解程序的意思。
4 ABB的AC31系列PLC 在地铁中的应用案例
1)应用案例1——深圳地铁:
图3 深圳地铁PLC硬件拓扑图
如图3所示,该项目两进线断路器、联络断路器以及三级负荷总开关相隔较近,且在同一排柜子的相邻位置,采用输入扩展模块XI16E1和输出扩展模块XO08R1配合PLC主机07KR51。进线、三级负荷总开关的所有控制信息和状态信息直接输入装于联络柜的PLC扩展模块,如图3所示。虽然连接电缆增加了一些,但少了4个扩展模块ICM14F1,实现在保证PLC备自投的可靠性的前提下,成功降低一定的备自投成本。。
2)应用案例2——广州地铁:
图4 广州地铁PLC硬件拓扑图
该项目在优化应用案例1的基础上,取消了2个电压继电器,取而代之的是通过装于进线回路的多功能表计采集电压信号,并通过通讯的方式传输到PLC。PLC读取电压值,并判断是否发生电压跌落。这样不仅减少了2个电压继电器的成本,同时凭借对电压信号的实时读取和判断,可以更准确的判断是否发生电压跌落,并发出信号,令三级负荷总开关跳闸。因为电压继电器的可调门阀值一般在70%左右,而判断读取的电压值可以jingque到10%左右。从而可以实现分批甩开一些不重要的负荷,以保证重要负荷的运行。
经过上面两个案例,PLC的备自投成本可以降低不少,甚至将低于继电器架构的备自投。可见,成本问题将不会成为阻碍PLC备自投在工业配电的应用。
5 结语
如今的工业项目,不再是简单的两进线一联络系统,而是三进线两联络或者四进线三联络。使用继电器备自投,每增加一进线回路或一联络回路,就需要增加一堆继电器和一堆用于控制、连锁的电缆,造成不可靠隐患的概率上升,而使用PLC的备自投,只需要修改一下程序即可,十分便利,相对增加了配电可靠性。
随着智能化和数字化的普及,有的项目拥有一个后台系统(如SCADA),PLC不仅能够实现备自投的功能,还能够将SCADA所需要的数据整合在一个数据区块,并实时更新,便于SCADA读取。
同时,为了方便客户使用,我们还可以将根据PLC实现的备自投的不同,做出若干个标准程序,比如标准自投自复,标准自投手复,标准三进线两母联等。随着因特网的普及,客户只需要在网上下载相应的标准程序,就可以满足自己的需要,降低了PLC的编程操作难度和人力维护成本。
1. 引言
发电机是电力系统的重要组成部分,它的可靠运行对于保证电力系统的稳定具有重要意义。发电机故障录波装置所记录的数据为工作人员正确分析发电机故障原因,研究事故对策,及时处理事故提供了可靠的依据,同时,根据故障录波数据还可以分析系统的故障参数、各电气量的变化规律,进行故障定位等,这些对于保证电力系统的安全可靠运行起着十分重要的作用。可编程控制器(Programmable Logic Controller,简称PLC)作为工业控制专用的计算机,由于其结构简单、性能优良,抗干扰性能好,可靠性高,在机械、化工、橡胶、电力等行业工业控制现场已日趋广泛地得到应用,成为工控现场进行实时控制的主要的控制装置。本文介绍一种利用可编程控制器和扩展模拟量模块实现发电机故障录波的方法。
2. 系统的组成和工作原理
系统的组成框图如图1所示,由上位计算机和1套PLC测控系统组成。PLC通过外部变送器、互感器与发电机组相连,发电机机端电压U、定子电流I为三相交流电,分别经电压互感器(PT)和电流互感器(CT)转换成三相100V、5A的二次信号,发电机转子励磁电流经过分流器RS转换成75mV信号,再经过三相功率(含有功、无功)变送器、三相电压变送器、直流电流变送器转换成与其成比例的0~10V电压信号后输入到PLC的模拟量模块。模拟量经过A/D转换,然后根据互感器、变送器的变换比例计算出机端电压U、转子电流If、有功功率P和无功功率Q的等机组运行量。PLC每隔20毫秒采样一次,每40毫秒将采样的数据保存到故障数据区中。当发生故障后,PLC记录下故障发生以后的13秒数据,故障数据记录过程结束。当PLC接收到上位机发送来的传送命令时,PLC将记录的故障数据通过串口通讯传送给上位机。上位机将数据完整的接收下来,经过数据处理显示出机组运行量U、If、P、Q、Ug(电压给定)在故障前7秒、后13秒的波形曲线,这样就可以对发电机故障进行分析了。在本系统中,PLC选用SIMATIC S7-226;模拟量模块选用与S7-226配套的产品EM235;PLC与计算机之间通过PC/PPI电缆连接以串行方式进行通讯。
图1 发电机故障录波系统框图
3. 下位机程序设计
PLC属于下位机,其程序共分为3个模块,它们是初始化子程序、录波子程序和通信子程序。以下将分别说明各模块的设计思想。
3.1 初始化子程序
初始化子程序包括初始化自由口通信参数,设置接收命令RCV启动和结束条件,数据指针赋初值,连接20ms采样、接收和发送中断。
3.2 录波子程序
录波子程序在20ms采样中断中调用,负责记录机组运行量U、If、P、Q、Ug在故障前7秒、后13秒的数据。
在PLC中定义一个连续的数据区VW4000~VW8998,用来保存故障数据。每个运行量的数据占用1000字节的数据块,地址分配如下,U:VW4000~VW4998 If:VW5000~VW5998 P:VW6000~VW6998 Q:VW7000~VW7998 Ug:VW8000~VW8998。
录波子程序每隔40毫秒将采样的数据送到各自的数据块中。为每个数据块定义一个数据指针,其初始值分别指向各数据块的首地址。每传送一次数据,各指针向下移动2字节。故障前7秒数据(350字节)是循环记录的,即如果在故障到来之前数据已存满,各数据指针将重新指向数据块的首地址。定义指针index用来记录20秒故障数据开始的位置。当故障到来时,数据指针指向故障后13秒数据(后650字节),此时指针index将前7秒数据分为前后两部分,正确的顺序是将前后两部分交换过来。当后13秒数据记录完后,录波子程序结束。程序流程图如图2所示。
3.3 通信子程序
通信子程序负责与上位机通信,将存储在数据区的故障数据通过串口分批传送给上位机。上位机每发送一次传送命令(用整数255表示),PLC在接收中断程序中判断收到的字符是否为传送命令,如果是则将传送命令标志M6.0置位并且在主程序中调用通信子程序。
定义指针tran_pointer用来指向待传送数据的首地址,其初值为&VW4000,即指向数据区首地址。定义变量count用来记录传送的次数。在通信子程序中,首先停止自由口的接收,然后将以指针tran_pointer为首地址,大小200字节的数据传送到发送缓冲区中,接着用发送命令通过串口发送出去。每发送一次数据,将指针tran_pointer向下移动200字节,变量count值加1, M6.0复位。当上位机发送完第26次传送命令时,PLC中数据区VW4000~VW8998的5000个字节已发送完毕,再将额定电压、额定电流、额定有功功率、额定无功功率和指针index发送出去, count值清零,指针tran_pointer重新初始化,M6.0复位。至此,一次完整的故障数据传送过程结束。
图2. 录波子程序流程图
4. 上位机程序设计
上位机程序设计是以Visual Basic 6.0 为平台,利用MS Comm控件,以事件驱动方式实现计算机与PLC之间串行通讯,完成数据间的交换。上位机程序包括用户界面设计、通讯和数据处理程序、显示程序等。
4.1 用户界面设计
本系统中,设计了两个窗体(bbbb1和bbbb2)。其中bbbb1为主界面,bbbb2为波形显示界面。在bbbb1中设计了一个MSComm控件、一个定时器控件(Timer1)和两个按钮控件(Command1和Command2)。其中Command1是开始按钮,即按下时开始和PLC通讯,读取其中的数据。Command2是显示按钮,即按下时调用窗体bbbb2,显示每个运行量的波形曲线。在bbbb2中设计了一个图片框控件(Picture1),用来显示图形。
4.2 通讯和数据处理程序设计
设置Timer1 的Interval属性等于500,MSComm的bbbbbMode属性为二进制方式,RThreshold属性等于5010。定时器每隔500毫秒发送一次传送命令,当发送到第26次时,关闭定时器,这时接收缓冲区将收到5010个字节的数据并触发MSComm的OnComm事件。在OnComm事件子程序中,将接收缓冲区中的数据依次分配到全局数组U_data、If_data、P_data、Q_data和Ug_data中,再根据各运行量的额定值计算出百分比值。各个数组的前350字节需要根据指针Index进行调整,具体方法是将数组下标范围Index~349的数据移到前面,下标范围1~Index-1的数据移到后面。
4.3 显示程序设计
在窗体bbbb2的装载事件bbbb_Load中编写图形显示程序。首先在图片框控件Picture1中设置自定义坐标系。设置ScaleMode属性值等于3,即以象素为度量单位。然后在该坐标系下画出坐标轴。X轴以秒为单位,曲线上两点间的时间间隔是40毫秒,换算成象素等于1.47。Y轴以百分比为单位,每个单位刻度换算成象素等于2.1。后根据数组U_data、If_data、P_data、Q_data和Ug_data分别画出相应运行量的波形图。以机端电压波形为例,给出编写的程序如下:
Picture1.DrawWidth = 1 ‘线宽为1
Picture1.CurrentX = 0 ‘指定当前坐标的位置
Picture1.CurrentY = U_data(0) * 2.1
For i= 1 To 499 ‘画出曲线
Picture1.Line -(1.47 * i, U_data(i) * 2.1), vbBlue
Next i
5. 系统的运行与实验结果
在系统运行前,要对PLC的通讯参数进行设置,包括波特率、校验方式、数据位位数和停止位位数等,此设置要和上位机一致。在S7-226中使用自由口模式和上位机进行串口通信时,可以通过特殊寄存器SMB30(端口0)或SMB130(端口1)来设定。下面以发电机空载停机实验为例说明系统的运行过程。
当发电机在正常空载下停机时,PLC检测到停机信号,将故障标志置位,然后记录下停机后13秒的数据。运行上位机程序,在主界面上按下“传送”按钮后,上位机开始读取PLC中数据。等到程序提示“数据传送完毕”后,按下“显示”按钮,将弹出“波形显示”窗口如图3所示。从图中可以看出,该曲线较好的反映了发电机停机前后机端电压、励磁电流的变化。
图3 波形显示窗口
6. 结束语
此系统已经成功应用于中、小型同步发电机励磁系统中,通过发电机的动态模拟实验和实际中的应用来看,该系统性能可靠、操作方便、界面友好,能够较好地满足电力系统对于故障记录、故障分析的需要。
一般情况下,采用微机控制或以微处理器为内核的工业嵌入式发电机励磁调节器较容易实现发电机运行参量的故障录波,采用PLC作为发电机励磁调节器的硬件平台,具有应用成本低、运行可靠性高但程序设计难度大的特点,其内部成功地嵌入发电机重要运行参量的故障录波具有较大的实用价值,尤其适用于目前大量开发的中小型水力发电站的水轮发电机组,对于保证发电机组的安全、稳定、可靠运行具有重要的意义。
随着PC技术的飞速发展,使得IPC(工业控制计算机)以及基于IPC的应用技术同样也得到了突飞猛进的发展。同时,随着Internet技术的应用和所有生产信息过程和控制信息过程的集成与发展,并可通过Internet/Intranet浏览生产过程信息流中的制造过程、操作和监控现场智能设备等,IPC越来越多地承担着SCADA的人机交互控制任务和协同下级小型控制器或智能现场设备的控制任务。总体而言,IPC还是适合应用于自动化控制平台的。但作为传统主流控制器的PLC,它拥有稳定性好、可靠性高、逻辑顺序控制能力强等优点,在自动化控制领域具有的优势。但有一大遗憾:其封闭式架构、封闭式系统(研发必须具备自己或OEM的CPU、芯片组、BIOS、操作系统、梯形图编程软件)、较差的开放性势必会造成其应用上的壁垒,也增加了用户维修的难度和集成的成本。有人断言,在不久的将来,基于PC的控制器将会逐步取代PLC而成为主流控制设备。为了改善这种局面,传统PLC生产厂家正在逐步将PLC的功能PC化(如Siemens的WinAC)、而IPC厂家也逐步将IPC的逻辑控制功能PLC化,使PLC和IPC在功能和规格方面越来越接近,由此就出现了基于PLC和IPC技术的中间控制器:PC-Based PLC。
PC-Based PLC也称嵌入式控制器,它不再像IPC那样以机箱加主板为主体结构,再搭配诸如A/D、D/A、DI/DO等功能I/O板卡的组合产品,而是一个独立的基于嵌入式PC技术的专用系统,适合应用于小型的SCADA系统。如泓格的I-8000系列, 其主机内部是40MHz主频的80188 CPU,操作系统为兼容DOS的MiniOS7,其编程环境是基于PC的标准C语言程序,程序开发过程与PLC极其相似:首先在PC上编写常驻任务程序,并将其编译好后传送到主机内的Flash上、再让其脱机运行。另外为了使其具备PLC的优势特性,PC-Based PLC也可使用梯形图编程,如泓格的ISaGRAF(配合I-8417/8817主机),相对于PLC而言,PC-Based PLC的优势在于拥有IPC强大的Computing、Data Processing和Communication功能,在软件方面,PC-Based PLC支持IEC-61131-3(LD、SFC、FBD、IL、ST)的五种语言和软逻辑。由于以上特点,PC-Based PLC将会更加开放和标准化,能适应更加复杂的控制和管控一体化信息的需求。
总的来说,IPC是开放式架构、开放式系统,PLC则是封闭式架构、封闭式系统,而PC-Based PLC介于二者之间,是开放式架构、封闭式系统。严格地说,IPC一般承担着管理控制任务和协同下级小型控制器或智能现场设备的控制任务,而PLC一般用作现地控制器。由于PC技术、信息技术、通信技术的交替发展,使得研发PC-Based PLC的投资相对减少,会有更多的厂家来共同推进PC-Based PLC的发展。因此,PC-Based PLC会有非常好的发展前景,但这并不意味着在短时间内PC-Based PLC会取代PLC,PLC和PC-Based PLC将会在竞争的发展中逐渐走向融合[1 、2]。
2 基于PC-Based PLC架构系统的应用技巧
2.1 AI模块
AI(Analog bbbbbs)的多寡对系统的运行的实时性和稳定性有较大的影响,尤其是当AI模块较多时其影响更大。主要原因为:I-8000模块的CPU仅仅是一款主频只有40MHz的80188的控制器,其数据处理能力、存储空间有限,导致其运算、逻辑处理以及事件响应的快速性就没有IPC那么强大,由于CPU要完成一次A/D的整个过程必须要进行采样、保持、同步、转换、存储、处理以及运算等一系列的过程方可完成,比较费时,因此,当要完成的AI通道数较多时,必然会影响采样的实时性和系统的稳定性。通常而言,在一个I-8000模块中,一般不要超过两块如I-8017H系列的AI模块为佳。
2.2 继电器输出模块
继电器输出模块对整个系统的影响大,处理不好,将会导致整个系统崩溃和经常出现当机、主机板烧坏等现象,由于I-8000模块的供电一般为10~30VDC,总的输入功率为20W,不像IPC的输入功率为250W那么大,假如继电器输出模块尤其是大功率继电器模块插放的太多,由于系统供电能量不足,将会导致其输出不正常,控制系统经常误动作,导致系统崩溃、当机,甚至会导致主控板烧坏,使系统的稳定性、安全性以及可靠性存在许多隐患因素。一般而言,像I-8060、I-8058、I-8063、I-8064、I-8065、I-8066、I-8068、I-8069等不要超过两块,尤其是I-8060、I-8063、I-8064、I-8065、I-8069这些功率模块好为一块。假如系统要控制的功率继电器较多,可以采用普通光隔开关量输入/输出模块如I-8042利用多级放大的原理连接。
2.3 通信处理
在由PC-Based PLC架构的控制系统为重要的一个环节便是与上位机进行的实时数据通信过程,而这一环节往往是制约系统实时性和稳定性的因素,它容易出现数据瓶颈。因为上位机通常为bbbbbbs操作系统,应用程序一般有人机交互界面和实时显示界面,而往往将人机交互界面和实时显示界面设计为前台窗口,数据通信、分析以及存储设计为后台运行,但bbbbbbs 并不是作为实时操作系统设计的,是抢先式、多任务、基于消息传递机制的操作系统,但仅凭消息调度机制,显然不能满足实时系统的要求,难以保证准确实时地完成前后台控制任务。因此在bbbbbbs环境中,采用多线程技术,可以有效地利用bbbbbbs等待时间,加快程序的反应速度,tigao执行效率。用一个线程管理计算机数据通信,另一个线程进行数据处理、分析与存储,这样在满足数据连续采集的同时,增强了系统事件响应和通信控制的实时性。
PC-Based PLC与上位机一般采用RS-485、CAN、ModBus或者Ethernet,假如采用RS-485、CAN、ModBus时,则要合理分配通信口,一般RS-485、CAN、ModBus的通信适配器卡有两个口,因此假如控制系统有两个I-8000模块,上位机可以采用一个通信口与两个下级控制器通信,但是假如有四、六个……,好将其分成两组,上位机则采用两个通信口分别与其通信,上位机采用两个线程编写通信程序,配置图见图1所示。
2.4 电源配置
假如一个控制系统有多块I-8000模块,考虑到系统的经济性以及安全性,好每两块I-8000公用一个开关或者线性电源,考虑到电源本身的功耗,此时电源的功率必须大于60W,并且每个电源模块分别接入~220VAC或者~380VAC的电源,千万不要串接。选择开关电源时要注意选用系统功率因数大于0.99且纹波电压Vrms≤1.0%、纹波系数≤0.2%的功率密度大、电磁兼容性好、低纹波开关电源。同时将控制器I/O通道和其它设备的供电采用各自的隔离变压器分离开来,有助于tigao控制系统的抗干扰能力。
2.5 信号地的处理
正确、良好的接地可以将混入电源和I/O电路的干扰信号引入大地,消除或减小干扰的影响,是安全保护和抑制噪声的重要手段,对tigaoI-8000系统的稳定性、可靠性极其重要。为了尽可能减小电磁噪声影响,电源回路和控制回路要分别设立接地极。在控制系统中难免有变频器之类的功率器件,注意要将变频器散热器、电源中性线、变频器外壳和中性端、电机外壳和Y型接法中性端要可靠接于电源回路接地极上,所有接地线不可形成接地回路。变频器接地电阻越小越好,接地导线截面积应不小于4mm2,长度应控制在20m以内。屏蔽层、数字信号地接于控制回路接地极。为防止形成回路,屏蔽层应单端接地。控制器的接地线与电源线、动力线分开。I-8000好单独接地,也可以与其他设备公共接地,但严禁与其他设备串联接地。
3 实际应用案例
在小型石油公司中,要进行大量的油料计量工作如轻油、0#汽油、90#汽油等,其计量过程往往是车队从货运站拖回公司后经公司磅房过磅称毛重、卸料、车辆出厂时,再过磅称车重等等,过磅过程、手续、登记极其繁琐,有时还容易出现错磅和漏磅现象,极不容易管理,并且给统计、计量工作带来了极大的困难,过磅工人的劳动强度大,经常出现车队排队过磅的现象,办事效率极其低下,为改变这种局势,采用PC-Based PLC I-8411嵌入式控制,并配以模拟信号输入模块I-8017H、模拟信号输出模块I-8024、光隔离数字输入/输出模块I-8042、I-8060继电器输出模块以及RS232/RS485转换器I-7520,并利用计算机控制技术,为其不同的油料的进站计量、出站计量、统计等开发了一套分布式的油料计量、统计管理系统,省时又省力,深得用户喜爱。系统架构图件图2所示。
图2:基于I-8411的分布式计量架构图
3.1 功能模块
1) 利用I-8017H的差分输入的6路分别采集运输车油罐的液位、液体温度、两个LUGB系列涡街liuliang变送器的liuliang值(备计算用,取两个liuliang计的平均值作为真正的liuliang值)、存储油罐的液位值以防液体溢出、温度等;
2) 利用I-8024的D/A功能,输出0~10V的直流信号作为Siemens公司的Micro Master通用型变频器的变频控制输入信号,以使变频器能进行V/F转换,变成0~50Hz的交变信号实时控制三相异步电机,达到使电机变频运行、促使液体恒速流动的目的。
3) 利用I-8060功率继电器输出信号实时控制各种liuliang继电器、liuliang控制电磁阀、电气接触器的开启;
4) 利用I-8042的数字I/O进行各种开关的检测与控制,同时实时检测liuliang继电器、liuliang控制电磁阀、电气接触器的闭合状态;
5) 利用I-7520作为RS-232/RS-485的转换器,使I-8411与上位机服务器的串口进行数据通信。
3.2 安全可靠措施
1) 尖峰脉冲的处理:由于在本系统中用到了大型的可控硅,其闭合与断开要产生巨大能量的尖峰脉冲,这一脉冲一旦进入信号系统中,不仅会引起控制系统的误动作,更为甚者,会烧坏控制设备、死锁控制信号输入通道。尤其是对I-8017H、I-8024、I-8042等模块影响较大,为了减少其影响,在每个控制模块的输入或输出端加入一阻容保护电路,以吸收其尖峰脉冲。同时信号地和电源地要分开。
2) 变频器过压的处理:在本系统中利用变频器拖动大惯性的牵引电机,由于变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现过压故障。因此必须增加再生制动单元,否则会干扰SCADA系统。
3.3 系统功能
1) 数据显示:对每种油料以数字、棒图、曲线的方式显示实时采集的liuliang、温度、开关状态、电机转速等各项参数;
2) 可进行liuliang和总量的计算,生成日报、月报、年报等;并可存储多年的历史记录;
3) 数据修复维护:具有参数设置和数据丢失修复功能。
4) 与公司的MIS系统实时交换数据
4 结束语
PC-Based PLC的发展得益于嵌入式CPU、嵌入式操作系统和IEC-61131-3(LD、SFC、FBD、IL、ST)标准化编程语言的发展,PC-Based PLC具有IPC和PLC的两重特性,具有PLC的系统结构,又具有IPC的开放式架构,目前在工控界是IPC、PLC以及PC-Based PLC共存的时代,又是三者逐渐走向融合的时代,随着嵌入式CPU、嵌入式操作系统以及符合IEC-61131-3语言开发工具的发展,PC-Based PLC或嵌入式控制器将更加开放和标准化,功能将会更加强大、数据通信能力将会更强、数据处理能力更快。更能适应更加复杂的工业控制需求。
- 庆阳西门子S7-200代理商 2024-05-08
- 酒泉西门子S7-200代理商 2024-05-08
- 平凉西门子S7-200代理商 2024-05-08
- 张掖西门子S7-200代理商 2024-05-08
- 武威西门子S7-200代理商 2024-05-08
- 天水西门子S7-200代理商 2024-05-08
- 白银西门子S7-200代理商 2024-05-08
- 金昌西门子S7-200代理商 2024-05-08
- 嘉峪关西门子S7-200代理商 2024-05-08
- 兰州西门子S7-200代理商 2024-05-08