延安西门子S7-200代理商
前言:光伏发电是根据光生伏应原理,利用太阳电池将太阳光能直接转化为电能。光伏发电应用场合广泛,在交通领域、通讯/通信领域、石油、海洋、气象领域以及居民生活用电等都有他们的身影,具有安全可靠,无噪声,无污染排放外,发电效率受环境温度影响小,系统占地面积小,土地利用率高等优点。光伏发电系统一般是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。本文将以一个太阳能电池方阵为例,介绍海为PLC在光伏发电中的应用。
关键字:Haiwell(海为)国产PLC 海为H01TCP-4智能网关 光伏发电
一、太阳跟踪系统原理
视日运动轨迹跟踪。由于相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,如果太阳能电池板能够时刻正对太阳,发电效率才会达到佳状态。目前通用的太阳跟踪控制系统都需要根据安放点的经纬度等信息计算一年中的每的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC中,也就是靠计算太阳位置以实现跟踪。
传感器跟踪。传感器跟踪是利用光线传感器检测太阳光线是否偏离电池板基线,当太阳光线偏离电池板基线时,传感器输出一个偏差信号,该信号经放大并转成标准信号,通过模拟量输入通道传给PLC,PLC运算后通过开关量输出控制执行机构,使跟踪装置重新对准太阳。
二、太阳能电池方阵组网介绍
1、单个太阳能电池方阵组网示意图:
2、光伏发电场万台跟踪器组网示意图
一个光伏发电场往往有成千上万台跟踪器,海为PLC和H04TCP-4网关组网便捷强大,把多个太阳能电池方阵接到光纤以太网交换机上,通过以太网传输,即可在中控室里对成千上万台PLC进行监控。组网示意图如下:
3、系统主要硬件配置
3.1 海为PLC
海为PLC混合型主机自带开关量和模拟量,6路模拟量输入,量程为0~10V,使用12位AD转换(通用0~20mA),支持直接接入光传感器。CPU 主机带2 个通讯口,可扩展至5 个通讯口,每个通讯口都可以进行编程和联网,都可作为主站或从站。支持1:N、N:1、N:N 联网方式,支持各种人机界面和组态软件,可与任何带通讯功能的第三方设备(如变频器、仪表、条码阅读器等)联网。
3.2 海为H01TCP-4智能网关
H01TCP-4是一款功能强大的硬件协议网关,将从设备的各种协议转成标准Modbus RTU或Modbus TCP协议。网关支持模拟量线性转换,支持取位功能,高低字节交换功能;网关内置WEB服务器,用户可以通过浏览器查看实时变化的数据和通信状态,方便现场调试;自带4个通讯串口1个以太网口,每个通讯口都自带通讯隔离。此外,智能网关还可对每个通讯口网络里的从机做通讯断线报警。
3.3光纤以太网交换机、中控室SCADA系统。
4、系统数据采集控制原理
每个跟踪器即1台海为PLC,时刻接收传感器传入的太阳光线位置信号,通过PLC模拟量输入通道给PLC,PLC经过用户程序运算,控制执行机构转动方向,使太阳能接收器时刻正对太阳直射方向,以获得大有效照射面积。
单个太阳能电池方阵中H01TCP-4,带4个通讯串口,每个串口连接15台PLC,把PLC里的数据采集到智能网关内部存储器存储,供上位机通讯采集监控和使用。上位机也可以发出控制命令,通过智能网关传给每个串口相应的PLC。此外,多个太阳能电池方阵可以一同接到光纤以太网交换机上,这样就可以实现对一个太阳能光伏发电场成千上万台的跟踪器进行集中控制监视。
三、系统优点
1、海为H01TCP-4只能网关组网能力强。多个太阳能电池方阵可以一同接到光纤以太网交换机上,这样就可以实现对一个太阳能光伏发电场成千上万台的跟踪器进行集中控制监视。
2、与传统组网相比,成本极大降低。传统采用一台PLC加一个以太网模块对每台跟踪器进行数据采集和监控,成本巨大;采用海为H01TCP-4只能网关模块,一个网关既可监控60多台PLC的运行情况。
3、智能网关对每一个网络里的每一个从机都会做通讯断线报警。管理方便,而传统的组网方式传统的网络管理难度大,排除故障难,人力投入大。
4、海为PLC通讯组网能力强。CPU 主机自带2 个通讯口,每个通讯口都可以进行编程和联网,都可作为主站或从站。支持1:N、N:1、N:N 联网方式,支持各种人机界面和组态软件,可与任何带通讯功能的第三方设备(如变频器、仪表、条码阅读器等)联网。
5、海为PLC编程软件全仿真,模拟量无须通过编程进行码值与工程量之间的转换。减少了程序编写和现场调试时间,方便了技术人员的调试工作,提高了工作效益。(end)
吸塑机(又叫热塑成型机)是将加热塑化的PVC、PE、PP、PET、HIPS等热塑 性塑料卷材吸制成各种形状的包装装璜盒、框等产品的机器。目前常见的产品有:日用品吸塑包装、小五金吸塑包装、汽车用品吸塑包装、电子产品吸塑包装、食品吸塑包装、化妆品吸塑包装、电脑周边设备吸塑包装、玩具吸塑包装、体育用品吸塑包 装、文具用品吸塑包装等。其对控制系统的要求是保证操作方便、机械动作和温度控制精度高、生产时间短、在同等生产条件下尽可能节约机械的耗电量。
吸塑机工作原理:吸塑成型又叫热塑成型,这种成型工艺主要是利用真空泵产生的真空吸力将加热软化后的PVC、PET、PETG、 APTT、PP、PE、PS等热可塑性塑料片材经过模具吸塑成各种形状的真空罩、吸塑托盘、泡壳等。
其主要构造是由给料、拉料、上下电加热炉、下闸、多功能可调尺寸、下模盘、上模、上闸、刀闸、切片、放片 及配以真空装置等构成;以气动装置为主动力源,其拉片、上模、下模、切刀采用电动、丝杆传动,中间继电器,行程开关等电器组成全自动控制系统。
汇川系统架构:汇川全自动吸塑机控制系统采用10.4寸HMI触摸屏,H2U 3232 PLC加7个16点输出模块控制112个电炉加热块加热,1KW伺服驱动切刀动作,两个5.5KW伺服分别驱动上下模;一个3KW伺服控制系统走片。
汇川系统架构
工艺要求:根据控制系统的工艺需求,系统需要控制四个伺服运行,其中上模伺服,下模伺服和拉片伺服运转精度要求在0.05mm。同时PLC在控制电炉加热时,需要采用PWM的形式控制加热,便于满足在生产不同产品时的相同时间内达到不同温度控制的需求。为了方便客户生产不同产品,其生产的过程参数需要保存下来。
汇川控制方案:根据客户的实际工艺需求,我们采用IS620P系列伺服和H2U 3232MTQ PLC加7个16点输出模块控制和10寸IT5100T HMI,完成了客户控制需求。
1)通过HMI的配方功能,将客户的生产工艺参数全部保存在配方下,单机HMI多可以保存32组配方,同时我们的HMI还支持USB保存功能,通过U盘可以实现数据海量保存。
通过HMI的配方功能可将客户的生产工艺参数全部保存在配方下
2)通过伺服运行位置模式,可以实现jingque的定位控制功能,通过现场实际的测量我们的控制精度可以达到在5个脉冲之内。
3)通过PLC的定时脉冲和计数器实现了可调式的脉冲输出。参考程序如下:
通过PLC的定时脉冲和计数器实现了可调式的脉冲输出
4)通过断电保持寄存器和计数器可以实现系统在自动模式无人操作下,可以自动加工,当产量完成时自动停止运行,并报警。参考程如下:
通过断电保持寄存器和计数器可以实现系统自动加工
结束语:该系统采用全伺服控制,与传统气缸和变频器控制系统相比较,系统的控制精度有了全面提高;提高了产品的成型质量;同时也降低系统的噪声;取消了定时器,降低了系统的成本。
在PLC通过脉冲的方式控制伺服时,需要做好脉冲的干扰处理工作,若处理不当,直接影响伺服控制精度,同时也会影响设备结构,因此我们建议使用屏蔽双绞线做控制。(end)
PLC作为新一代的工业控制器,由于具有通用性好、实用性强、硬件配套齐全、编程简单易学等优点,因而广泛应用于电力、机械、纺织、电子、交通运输、石油化工等行业的自动控制系统中。PLC是专门为工业控制设计的,在设计和制造过程中采取了多层次的抗干扰措施,使系统能在恶劣的工业环境下与强电设备一起工作,运行的稳定性和可靠性很高。PLC整机的平均无故障时间可达几十万小时。
随着相关技术的发展,PLC的功能也越来越强,使用越来越方便。但是,整机的可靠性高只是保证系统可靠工作的前提,在设计和安装PLC系统的过程中还要采取相应的措施,才能保证系统可靠工作。如果PLC的工作环境过于恶劣,如温度过高、湿度过大、振动和冲击过强,以及电磁干扰严重或安装使用不当等,都会直接影响PLC的正常、安全和可靠运行。如果外围电路的抗干扰措施不当,整个控制系统的可靠性就大大降低。因此,在系统设计时应予以充分的考虑,在硬件上进行适当的配置,并辅以相应的软件,以实现系统故障的防范。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是整个系统可靠运行的关键。因此,分析研究PLC应用中的可靠性和抗干扰技术是十分必要的。要提高PLC控制系统的可靠性,既要在硬件上采取措施,又要在软件上设计相应的保护程序。
1.PLC控制系统中的干扰源
PLC系统的干扰源根据其来源分为内部干扰源和外部干扰源两类,一般主要包括以下几个方面。
(1)来自电气控制柜设备内部的干扰
①来自PLC系统内部的干扰,主要由PLC系统内部元器件及电路间的电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,数字地、模拟地和系统地处理不当而相互影响,以及元器件间的相互不匹配使用等。这属于PLC制造商对系统内部进行电磁兼容设计的内容,作为使用者是无法改变的。
②电气控制柜中使用诸如大功率变频器和交流接触器等容易产生干扰的器件。此类干扰有电路参数和工作点选择不当而引起的震荡或波形畸变、快速上升的脉冲源以及在信号传送时阻抗的不匹配、器件的物理噪声(如元件热噪声、触点热电势等)。
③由于元器件布局不合理造成的内部信号相互串扰。如线路中存在的电容性元件引起的寄生振荡以及由于电路逻辑设计和系统电气设计不合理所产生的干扰。
(2)来自电气控制柜外部的干扰
①来自电源的干扰。由于PLC系统的正常供电电源均由电网供电,因电源引入的干扰造成PLC控制系统故障的情况很多,如高压断路器、隔离开关、大容量变压器等的影响,大型电力设备起停和交直流传动装置引起的谐波,各种电气设备(电动机、空气开关等)、电焊机及电力系统的短路故障等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但制造工艺等因素使其隔离性并不理想。由于分布电容的存在,隔离是不可能的。
②来自信号线引入的干扰。与PLC控制系统连接的各类信号线除了传送各类有效的信息之外,还会受到空间电磁辐射感应的干扰,即信号线上的外部感应干扰。这类干扰信号会引起PLC的I/O信号工作异常。
③来自接地系统的干扰。由地线侵入的静电耦合或电磁耦合可对系统产生干扰。在PLC控制系统中,由于各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,形成共模噪声,影响系统正常工作。此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合干扰信号回路。若系统地与其他接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。正确的接地既能抑制电磁干扰的影响,又能抑制设备向外发出干扰。错误的接地不仅会引入干扰信号,接地线本身还会成为天线向外辐射噪声,干扰PLC控制系统的正常工作。
④按钮、继电器等工作时触点间产生的电弧、静电产生的火花放电、外界的高频加热器、高频淬火设备、杂乱的无线电波信号等带来的干扰等。
(3)其他干扰
①雷击造成的过电压和过电流。
②温度变化引起的接触电阻的变化。
③机械振动。
2.干扰途径
PLC控制系统受到干扰的主要途径有电源线、输入/输出线和空间传播等。电源受干扰后,PLC控制系统的供电质量变差,会引起PLC控制失灵。输入/输出线受干扰后,会出现输入/输出控制紊乱。空中干扰主要以电磁感应和静电感应形式使PLC的CPU出现误操作。
3.PLC控制系统中的抗干扰措施
PLC控制系统的可靠性设计在系统设计中占有重要地位,在实际设计中,应根据应用系统的具体特点和应用环境的具体条件,灵活地选择行之有效的可靠性设计技术和抗干扰措施,全面、合理地考虑系统的软件和硬件设计,从总体上提高系统的抗干扰能力和可靠性。
PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制干扰,对有些干扰情况还需做具体分析。在实际开发过程中,应充分考虑到对PLC的各种不利因素,在硬件、软件的设计和安装中采取适当的保护措施,才能保证控制系统安全、可靠地运行。
要提高PLC控制系统的可靠性,针对干扰产生的原因,必须从设计阶段就采取相应的抑制措施,常见的措施有提高装置和系统的抗干扰能力、抑制干扰源、切断或衰减电磁干扰的传播途径等,基本的抗干扰措施如表1所示。
表1 常用的抗干扰措施
工程设计人员仅仅了解抗干扰的原则,掌握抗干扰的基本措施还不够,许多情况下干扰源对系统的干扰不是那么明显,应综合考虑各方面的因素,在实践中不断总结。在实际的工程设计中通常采用的主要抗干扰措施有:
(1)选择抗干扰能力强的产品
在控制系统的设备选型阶段,考虑到各厂家PLC抗干扰性能的优劣,选型时就需选择有较高抗干扰能力的产品,其包括了电磁兼容性(Electromagnetic Compatibility,EMC),尤其是抗外部干扰的能力,如采用浮地技术、隔离性能好的PLC。其次还应了解生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等。另外好的方法是考察该型号PLC在类似工作环境中的使用情况。
(2)采用性能好的电源,抑制电网干扰
在PLC控制系统中,电源占有极重要的地位。电网干扰串入PLC控制系统主要通过PLC系统的供电电源(如CPU电源、I/O电源等)、变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入。PLC系统的供电电源一般都采用隔离性能较好的电源,变送器的电源及与PLC有直接电气连接的仪表的供电电源应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的产品,以减少对PLC系统的干扰。
此外,PLC电源要与整个供电系统的动力电源分开,一般在进入PLC系统时加屏蔽隔离变压器。屏蔽隔离变压器的次级侧至PLC系统间必须采用不小于2mm2的双绞线。屏蔽体一般位于一、二次侧两线圈之间并与大地连接,这样就可消除线圈间的直接耦合。另外,电源谐波比较严重时,可在隔离变压器前面加滤波器来消除电源的大部分谐波。必要时可在供电的电源线路上接入低通滤波器,以滤去高频干扰信号。滤波器应放在隔离变压器之前,即先滤波后隔离。分离供电系统,将控制器、I/O通道和其他设备的供电采用各自的隔离变压器分离开来,也有助于抗电网干扰。
(3)电缆的选择和敷设
PLC控制系统的线路中有电源线、输入/输出线、动力线和接地线,布线不当则会造成电磁感应和静电感应等干扰,因此必须按照特定的要求布线。动力电缆为高压大电流线路,PLC系统的配线靠近时会受到干扰,因此布线时要将PLC的输入/输出线与其他控制线分开,不要共用一条电缆。开关量信号线与模拟量信号线也应分开布线,而且后者应采用屏蔽线,并且将屏蔽层接地。数字传送线也要采用屏蔽线,并且要将屏蔽层接地。外部布线时应将控制电缆、动力电缆、输入/输出线分开且单独布线,相互之间一般应保持30cm以上的间距。当实际情况只能允许在同一线槽布线时,就用金属板把控制电缆、动力电缆、输入/输出线间隔开来并屏蔽,金属板还必须接地。隔离变压器二次侧的电源线要采用2mm2以上的铜芯聚氯乙烯绝缘双绞软线。经过这样处理的电源线、输入/输出线与动力线就可以减少外界磁场及相互之间的干扰。
(4)安装中的抗干扰措施
PLC控制系统所处的环境对其自身的抗干扰也有一定的关系,因此在安装时应注意以下几个方面。
①滤波器、隔离稳压器应设在PLC控制柜的电源进线口处,不让干扰进入控制柜内,或尽量缩短进线距离。
②PLC控制柜应尽可能远离高压柜、大动力设备和高频设备。
③PLC要尽可能远离继电器之类的电磁线圈和容易产生电弧的触点。
④PLC要远离发热的电气设备或其他热源,并放在通风良好的位置上。
⑤PLC的外部要有可靠的防水措施,以防止雨水进入,造成机器损坏。
(5)正确选择接地点,完善接地系统
接地的目的通常有两个,一是为了安全,二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。
系统接地方式有浮地方式、直接接地方式和电容接地3种。PLC控制系统属于高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统的接地线一般采用一点接地和串联一点接地的方式,好单独接地,也可以与其他设备公共接地,但严禁与其他设备串连接地。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。如果装置间距较大,应采用串联一点接地的方式,即用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地极。接地线采用截面大于20mm2的铜导线,总母线使用截面大于60mm2的铜排。接地极的接地电阻应小于2Ω,接地极好埋在距建筑物10~15m远处,而且PLC系统的接地点必须与强电设备的接地点相距10m以上。
信号源接地时,屏蔽层应在信号侧接地,不接地时应在PLC侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地。多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。连接接地线时,应注意以下几点:
①PLC控制系统单独接地。
②PLC系统的接地端是抗干扰的中性端子,正确接地可以有效消除电源系统的共模干扰。
③PLC系统的接地线至少用20mm2的专用接地线,以防止感应电的产生。
④输入/输出信号电缆的屏蔽线应与接地端子连接,且接地良好。
(6)外围设备干扰的抑制
①PLC输入/输出端子的保护
当输入信号源为感性元件,输出驱动的负载为感性元件时,对于直流电路应在其两端并联续流二极管。对于交流电路,应在其两端并联阻容吸收电路。其作用是为了防止在感性输入或输出电路断开时产生很高的感应电势或浪涌电流对PLC输入/输出端和内部电源的冲击,若PLC的驱动元件主要是电磁阀和交流接触器线圈,应在PLC输出端与驱动元件之间增加光电隔离的过零型固态继电器。
②输入/输出信号的防错
当输出元件为双向晶闸管或晶体管而外部负载又很小时,因为这类输出元件在关断时有较大的漏电流,使输入电路和外部负载电路不易关断,导致输入/输出信号的错误,为此应在这类输入/输出端并联旁路电阻,以减小PLC的输入电流和外部负载上的电流。
③漏电流
当采用接近开关、光电开关等直流两线式传感器输入信号时,若漏电流较大,应考虑由此而产生的误动作,使PLC输入信号不能关断。一般在PLC的输入端子上接一旁路电阻,以减少输入阻抗。同样用双向晶闸管输出时,为避免漏电流等原因引起的输出元件关断不了,也可以在输出端并联一旁路电阻。
④浪涌电压
在PLC触点(开关量)输出的场合,不管PLC本身有无抗干扰措施,都应采用RC吸收回路(交流负载)或并接续流二级管(直流负载),以吸收感性负载产生的浪涌电压。
⑤冲击电流
用晶体管或双向晶闸管输出模块驱动白炽灯之类的负载时,为保护输出模块,应在PLC输出端并接旁路电阻或与负载串联限流电阻。
(7)电磁干扰的抑制
根据干扰模式的不同,PLC控制系统的电磁干扰分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射等在信号线上感应的电压叠加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这是PLC系统I/O模块损坏率较高的主要原因)。这种共模干扰可为直流,也可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间的感应以及由不平衡电路转换共模干扰所形成的电压。这种电压叠加在信号上,直接影响测量与控制精度。为了保证PLC控制系统在工业环境中免受或减少电磁干扰,一般采用隔离和屏蔽的方法。
(8)软件抗干扰措施
由于电磁干扰的复杂性,要根本消除干扰的影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的可靠性。
由于噪声、开关的误动作、模拟信号误差等因素的影响,PLC的外部开关量和模拟量输入信号会出现错误,引起程序判断失误,造成事故。当按钮、开关作为输入信号时,则不可避免产生抖动。如果输入信号是继电器/接触器触点,有时会产生瞬间跳动,引起系统误动作。在这种情况下,可采用定时器延时来去掉抖动,定时时间根据触点抖动情况和系统要求的响应速度而定,这样可保证触点确实稳定闭合(或断开)后才执行特定的任务处理。
对于模拟信号可采用多种软件滤波方法来提高数据的可靠性。连续采样多次,采样间隔根据A/D转换时间和信号的变化频率而定。采样数据先后存放在不同的数据寄存器中,经比较后取中间值或平均值作为当前输入值。常用的数字滤波方法有程序判断滤波、中值滤波、滑动平均值滤波、防脉冲干扰平均值滤波、算术平均值滤波、去极值平均滤波等。
①程序判断滤波适用于对采样信号因受到随机干扰或传感器不稳定而引起的失真进行滤波。设计时根据经验确定两次采样允许的大偏差,若先后两次采样的信号差值大于偏差,表明输入是干扰信号,应去掉,用上次采样值作为本次采样值。若差值不大于偏差,则本次采样值有效。
②中值滤波是连续输入3个采样信号,从中选择中间值作为有效采样信号。
③滑动平均值滤波是将数据存储器的一个区域(20个单元左右)作为循环队列,每次数据采集时先去掉队首的一个数据,再把新数据放入队尾,然后求平均值。
④去极值平均滤波是连续采样n次,求数据的累加和,同时找出其中的大值和小值,从累加和中减去大值和小值,再求(n-2)个数据的平均值作为有效的采样值。
⑤算术平均值滤波是求连续输入的n个采样数据的算术平均值作为有效的信号。它不能消除明显的脉冲干扰,只是削弱其影响。要提高效果可采用去极值平均滤波。
⑥防脉冲干扰平均值滤波是连续进行4次采样,去掉其中的大值和小值,再求剩下的两个数据的平均值。它实际上是去极值平均滤波的特例。
在设计中还可以用线性插值法、二次抛物线插值法或分段曲线拟合等方法对数据进行非线性补偿,提高数据的线性度。也可采用零位补偿或自动零跟踪补偿等方法来处理零漂,修正误差,提高采样数据的精度。
另外还可进行信号相容性检查,包括开关信号之间的状态是否矛盾,模拟信号值的变化范围是否正常,开关量信号与模拟量信号之间是否一致,以及各信号的时序关系是否正确等。定时校正参考点电位,并采用动态零点,可有效防止电位漂移。采用信息冗余技术,设计相应的软件标志位,并通过设置软件陷阱等方法来提高软件结构的可靠性。
- 渭南西门子S7-200代理商 2024-05-08
- 咸阳西门子S7-200代理商 2024-05-08
- 宝鸡西门子S7-200代理商 2024-05-08
- 铜川西门子S7-200代理商 2024-05-08
- 西安西门子S7-200代理商 2024-05-08
- 陕西西门子S7-200代理商 2024-05-08
- 拉萨西门子S7-200代理商 2024-05-08
- 西藏西门子S7-200代理商 2024-05-08
- 临沧西门子S7-200代理商 2024-05-08
- 普洱西门子S7-200代理商 2024-05-08